45 research outputs found

    Consequences of anisotropy in electrical charge storage: application to the characterization by the mirror method of TiO2 rutile

    Get PDF
    This article is devoted first to anisotropic distributions of stored electric charges in isotropic materials, second to charge trapping and induced electrostatic potential in anisotropic dielectrics. On the one hand, we examine the case of anisotropic trapped charge distributions in linear homogeneous isotropic (LHI) insulators, obtained after an electron irradiation in a scanning electron microscope. This injection leads to the formation of a mirror image

    Membrane patterned by pulsed laser micromachining for proton exchange membrane fuel cell with sputtered ultra-low catalyst loadings

    Get PDF
    International audienceProton exchange membranes were nano-and micro-patterned on their cathode side by pressing them against stainless steel molds previously irradiated by a Ti:Sapphire femtosecond laser. The membranes were associated to ultra-low loaded thin catalytic layers (25 ”gPt cm-2) prepared by plasma magnetron sputtering. The Pt catalyst was sputtered either on the membrane or on the porous electrode. The fuel cell performance in dry conditions were found to be highly dependent on the morphology of the membrane surface. When nanometric ripples covered by a Pt catalyst were introduced on the surface of the membrane, the fuel cell outperformed the conventional one with a flat membrane. By combining nano-and micro-patterns (nanometric ripples and 11-24 ”m deep craters), the performance of the cells was clearly enhanced. The maximum power density achieved by the fuel cell was multiplied by a factor of 3.6 (at 50 °C and 3 bars): 438 mW cm-2 vs 122 mW cm-2. This improvement is due to high catalyst utilization with a high membrane conductivity. When Pt is sputtered on the porous electrode (and not on the membrane), the contribution of the patterned membrane to the fuel cell efficiency was less significant, except in the presence of nanometric ripples. This result suggests that the patterning of the membrane must be consistent with the way the catalyst is synthesized, on the membrane or on the porous electrode

    Torque Teno Sus Virus (TTSuV) in Cell Cultures and Trypsin

    Get PDF
    Torque teno sus virus (TTSuV), a member of the family Anelloviridae, is a single-stranded, circular DNA virus, widely distributed in swine populations. Presently, two TTSuV genogroups are recognized: Torque teno sus virus 1 (TTSuV1) and Torque teno sus virus 2 (TTSuV2). TTSuV genomes have been found in commercial vaccines for swine, enzyme preparations and other drugs containing components of porcine origin. However, no studies have been made looking for TTSuV in cell cultures. In the present study, a search for TTSuV genomes was carried out in cell culture lineages, in sera used as supplement for cell culture media as well as in trypsin used for cell disaggregation. DNA obtained from twenty-five cell lineages (ten from cultures in routine multiplication and fifteen from frozen ampoules), nine samples of sera used in cell culture media and five batches of trypsin were examined for the presence of TTSuV DNA. Fifteen cell lineages, originated from thirteen different species contained amplifiable TTSuV genomes, including an ampoule with a cell lineage frozen in 1985. Three cell lineages of swine origin were co-infected with both TTSuV1 and TTSuV2. One batch of trypsin contained two distinct TTSuV1 plus one TTSuV2 genome, suggesting that this might have been the source of contamination, as supported by phylogenetic analyses of sequenced amplicons. Samples of fetal bovine and calf sera used in cell culture media did not contain amplifiable TTSuV DNA. This is the first report on the presence of TTSuV as contaminants in cell lineages. In addition, detection of the viral genome in an ampoule frozen in 1985 provides evidence that TTSuV contamination is not a recent event. These findings highlight the risks of TTSuV contamination in cell cultures, what may be source for contamination of biological products or compromise results of studies involving in vitro multiplied cells

    Molecular diversity of Cotton leaf curl Gezira virus isolates and their satellite DNAs associated with okra leaf curl disease in Burkina Faso

    Get PDF
    Okra leaf curl disease (OLCD) is a major constraint on okra (Abelmoschus esculentus) production and is widespread in Africa. Using a large number of samples representative of the major growing regions in Burkina Faso (BF), we show that the disease is associated with a monopartite begomovirus and satellite DNA complexes. Twenty-three complete genomic sequences of Cotton leaf curl Gezira virus (CLCuGV) isolates associated with OLCD, sharing 95 to 99% nucleotide identity, were cloned and sequenced. Six betasatellite and four alphasatellite (DNA-1) molecules were also characterized. The six isolates of betasatellite associated with CLCuGV isolates correspond to Cotton leaf curl Gezira betasatellite (CLCuGB) (88 to 98% nucleotide identity). One isolate of alphasatellite is a variant of Cotton leaf curl Gezira alphasatellite (CLCuGA) (89% nucleotide identity), whereas the three others isolates appear to correspond to a new species of alphasatellite (CLCuGA most similar sequence present 52 to 60% nucleotide identity), provisionally named Okra leaf curl Burkina Faso alphasatellite (OLCBFA). Recombination analysis of the viruses demonstrated the interspecies recombinant origin of all CLCuGV isolates, with parents being close to Hollyhock leaf crumple virus (AY036009) and Tomato leaf curl Diana virus (AM701765). Combined with the presence of satellites DNA, these results highlight the complexity of begomoviruses associated with OLCD

    Surveillance des risques d’effondrement dans l’aprĂšs-mine, besoins, mĂ©thodes : apport de la microsismique

    No full text
    Lors de l’exploitation, la stabilitĂ© des ouvrages miniers principalement orientĂ©e vers la sĂ©curitĂ© des mineurs et la sauvegarde de la mine Ă©tait pratiquĂ©e avec des mĂ©thodes adaptĂ©es Ă  des Ă©difices accessibles et entretenus. Suite Ă  la fermeture des mines, ces conditions n’étant plus assurĂ©es et les objectifs de sĂ©curitĂ© publique rĂ©solument tournĂ©s vers la sauvegarde des personnes et des biens en surface conduisent Ă  rechercher des mĂ©thodes globales applicables Ă  distance et depuis la surface. Parmi celles-ci, nous dĂ©veloppons l’exemple type de la microsismicitĂ© qui, avant d’ĂȘtre appliquĂ©e Ă  la surveillance des risques d’effondrement minier, a dĂ» rĂ©pondre Ă  un cahier des charges prĂ©cis pour ĂȘtre qualifiĂ©e puis validĂ©e. Un exemple de son utilisation avec succĂšs pour la surveillance du stot de Nondkeil (Ottange, 57) est proposĂ©

    Monte Carlo simulation of the secondary electron yield of an insulating target bombarded by a defocused primary electron beam

    No full text
    International audienceWe study the charge of an insulating target irradiated by a broad electron beam of a few keV with our Monte Carlo simulation model. We are particularly interested in the dynamics which leads the system towards a stationary state. We examine successively the role of parameters such as the density of current in the primary beam, the density of traps, their activation energy. According to the situation considered, one observes that the regulation of the system can sometimes be stopped, either because the traps become saturated, or, in the case of thin targets, by the appearance of a leakage current towards the ground, due to carriers released from the traps
    corecore