179 research outputs found

    Genetic hitchhiking in a subdivided population of Mytilus edulis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Few models of genetic hitchhiking in subdivided populations have been developed and the rarity of empirical examples is even more striking. We here provide evidences of genetic hitchhiking in a subdivided population of the marine mussel <it>Mytilus edulis</it>. In the Bay of Biscay (France), a patch of <it>M. edulis </it>populations happens to be separated from its North Sea conspecifics by a wide region occupied only by the sister species <it>M. galloprovincialis</it>. Although genetic differentiation between the two <it>M. edulis </it>regions is largely non-significant at ten marker loci (average F<sub>ST</sub>~0.007), a strong genetic differentiation is observed at a single locus (F<sub>ST </sub>= 0.25). We validated the outlier status of this locus, and analysed DNA sequence polymorphism in order to identify the nature of the selection responsible for the unusual differentiation.</p> <p>Results</p> <p>We first showed that introgression of <it>M. galloprovincialis </it>alleles was very weak in both populations and did not significantly affect their differentiation. Secondly, we observed the genetic signature of a selective sweep within both <it>M. edulis </it>populations in the form of a star-shaped clade of alleles. This clade was nearly fixed in the North Sea and was segregating at a moderate frequency in the Bay of Biscay, explaining their genetic differentiation. Incomplete fixation reveals that selection was not direct on the locus but that the studied sequence recombined with a positively selected allele at a linked locus while it was on its way to fixation. Finally, using a deterministic model we showed that the wave of advance of a favourable allele at a linked locus, when crossing a strong enough barrier to gene flow, generates a step in neutral allele frequencies comparable to the step observed between the two <it>M. edulis </it>populations at the outlier locus. In our case, the position of the barrier is now materialised by a large patch of heterospecific <it>M. galloprovincialis </it>populations.</p> <p>Conclusion</p> <p>High F<sub>ST </sub>outlier loci are usually interpreted as being the consequence of ongoing divergent local adaptation. Combining models and data we show that among-population differentiation can also dramatically increase following a selective sweep in a structured population. Our study illustrates how a striking geographical pattern of neutral diversity can emerge from past indirect hitchhiking selection in a structured population.</p> <p>Note</p> <p>Nucleotide sequences reported in this paper are available in the GenBankℱ database under the accession numbers <ext-link ext-link-type="gen" ext-link-id="EU684165">EU684165</ext-link> – <ext-link ext-link-type="gen" ext-link-id="EU684228">EU684228</ext-link>.</p

    How do species barriers decay? Concordance and local introgression in mosaic hybrid zones of mussels.

    Get PDF
    The Mytilus complex of marine mussel species forms a mosaic of hybrid zones, found across temperate regions of the globe. This allows us to study 'replicated' instances of secondary contact between closely related species. Previous work on this complex has shown that local introgression is both widespread and highly heterogeneous, and has identified SNPs that are outliers of differentiation between lineages. Here, we developed an ancestry-informative panel of such SNPs. We then compared their frequencies in newly sampled populations, including samples from within the hybrid zones, and parental populations at different distances from the contact. Results show that close to the hybrid zones, some outlier loci are near to fixation for the heterospecific allele, suggesting enhanced local introgression, or the local sweep of a shared ancestral allele. Conversely, genomic cline analyses, treating local parental populations as the reference, reveal a globally high concordance among loci, albeit with a few signals of asymmetric introgression. Enhanced local introgression at specific loci is consistent with the early transfer of adaptive variants after contact, possibly including asymmetric bi-stable variants (Dobzhansky-Muller incompatibilities), or haplotypes loaded with fewer deleterious mutations. Having escaped one barrier, however, these variants can be trapped or delayed at the next barrier, confining the introgression locally. These results shed light on the decay of species barriers during phases of contact.ANR, France; Russian Science Foundatio

    Adaptive evolution and segregating load contribute to the genomic landscape of divergence in two tree species connected by episodic gene flow

    Get PDF
    Speciation often involves repeated episodes of genetic contact between divergent populations before reproductive isolation (RI) is complete. Whole-genome sequencing (WGS) holds great promise for unravelling the genomic bases of speciation. We have studied two ecologically divergent, hybridizing species of the ‘model tree’ genus Populus (poplars, aspens, cottonwoods), Populus alba and P. tremula, using >8.6 million single nucleotide polymorphisms (SNPs) from WGS of population pools. We used the genomic data to (i) scan these species’ genomes for regions of elevated and reduced divergence, (ii) assess key aspects of their joint demographic history based on genomewide site frequency spectra (SFS) and (iii) infer the potential roles of adaptive and deleterious coding mutations in shaping the genomic landscape of divergence. We identified numerous small, unevenly distributed genome regions without fixed polymorphisms despite high overall genomic differentiation. The joint SFS was best explained by ancient and repeated gene flow and allowed pinpointing candidate interspecific migrant tracts. The direction of selection (DoS) differed between genes in putative migrant tracts and the remainder of the genome, thus indicating the potential roles of adaptive divergence and segregating deleterious mutations on the evolution and breakdown of RI. Genes affected by positive selection during divergence were enriched for several functionally interesting groups, including well-known candidate ‘speciation genes’ involved in plant innate immunity. Our results suggest that adaptive divergence affects RI in these hybridizing species mainly through intrinsic and demographic processes. Integrating genomic with molecular data holds great promise for revealing the effects of particular genetic pathways on speciation

    Does natural selection explain the fine scale genetic structure at the nuclear exon Glu-5 0 in blue mussels from Kerguelen?

    Get PDF
    Abstract The Kerguelen archipelago, isolated in the Southern Ocean, shelters a blue mussel Mytilus metapopulation far from any influence of continental populations or any known hybrid zone. The finely carved coast leads to a highly heterogeneous habitat. We investigated the impact of the environment on the genetic structure in those Kerguelen blue mussels by relating allele frequencies to habitat descriptors. A total sample comprising up to 2248 individuals from 35 locations was characterized using two nuclear markers, mac-1 and Glu-5 0 , and a mitochondrial marker (COI). The frequency data from 9 allozyme loci in 9 of these locations were also reanalyzed. Two other nuclear markers (EFbis and EFprem&apos;s) were monomorphic. Compared to Northern Hemisphere populations, polymorphism in Kerguelen blue mussels was lower for all markers except for the exon Glu-5 0 . At Glu-5 0 , genetic differences were observed between samples from distinct regions (F CT = 0.077), as well as within two regions, including between samples separated by &lt;500 m. No significant differentiation was observed in the AMOVA analyses at the two other markers (mac-1 and COI). Like mac-1, all allozyme loci genotyped in a previous publication, displayed lower differentiation (Jost&apos;s D) and F ST values than Glu-5 0 . Power simulations and confidence intervals support that Glu-5 0 displays significantly higher differentiation than the other loci (except a single allozyme for which confidence intervals overlap). AMOVA analyses revealed significant effects of the giant kelp Macrocystis and wave exposure on this marker. We discuss the influence of hydrological conditions on the genetic differentiation among regions. In marine organisms with high fecundity and high dispersal potential, gene flow tends to erase differentiation, but this study showed significant differentiation at very small distance. This may be explained by the particular hydrology and the carved coastline of the Kerguelen archipelago, together with spatially variable selection at Glu-5 0

    Speciation in the Deep Sea: Multi-Locus Analysis of Divergence and Gene Flow between Two Hybridizing Species of Hydrothermal Vent Mussels

    Get PDF
    International audienceBackground: Reconstructing the history of divergence and gene flow between closely-related organisms has long been a difficult task of evolutionary genetics. Recently, new approaches based on the coalescence theory have been developed to test the existence of gene flow during the process of divergence. The deep sea is a motivating place to apply these new approaches. Differentiation by adaptation can be driven by the heterogeneity of the hydrothermal environment while populations should not have been strongly perturbed by climatic oscillations, the main cause of geographic isolation at the surface. Methodology/Principal Finding: Samples of DNA sequences were obtained for seven nuclear loci and a mitochondrial locus in order to conduct a multi-locus analysis of divergence and gene flow between two closely related and hybridizing species of hydrothermal vent mussels, Bathymodiolus azoricus and B. puteoserpentis. The analysis revealed that (i) the two species have started to diverge approximately 0.760 million years ago, (ii) the B. azoricus population size was 2 to 5 time greater than the B. puteoserpentis and the ancestral population and (iii) gene flow between the two species occurred over the complete species range and was mainly asymmetric, at least for the chromosomal regions studied. Conclusions/Significance: A long history of gene flow has been detected between the two Bathymodiolus species. However, it proved very difficult to conclusively distinguish secondary introgression from ongoing parapatric differentiation. As powerful as coalescence approaches could be, we are left by the fact that natural populations often deviates from standard assumptions of the underlying model. A more direct observation of the history of recombination at one of the seven loci studied suggests an initial period of allopatric differentiation during which recombination was blocked between lineages. Even in the deep sea, geographic isolation may well be a crucial promoter of speciation

    Adaptive Evolution and the Birth of CTCF Binding Sites in the Drosophila Genome

    Get PDF
    Changes in the physical interaction between cis-regulatory DNA sequences and proteins drive the evolution of gene expression. However, it has proven difficult to accurately quantify evolutionary rates of such binding change or to estimate the relative effects of selection and drift in shaping the binding evolution. Here we examine the genome-wide binding of CTCF in four species of Drosophila separated by between ~2.5 and 25 million years. CTCF is a highly conserved protein known to be associated with insulator sequences in the genomes of human and Drosophila. Although the binding preference for CTCF is highly conserved, we find that CTCF binding itself is highly evolutionarily dynamic and has adaptively evolved. Between species, binding divergence increased linearly with evolutionary distance, and CTCF binding profiles are diverging rapidly at the rate of 2.22% per million years (Myr). At least 89 new CTCF binding sites have originated in the Drosophila melanogaster genome since the most recent common ancestor with Drosophila simulans. Comparing these data to genome sequence data from 37 different strains of Drosophila melanogaster, we detected signatures of selection in both newly gained and evolutionarily conserved binding sites. Newly evolved CTCF binding sites show a significantly stronger signature for positive selection than older sites. Comparative gene expression profiling revealed that expression divergence of genes adjacent to CTCF binding site is significantly associated with the gain and loss of CTCF binding. Further, the birth of new genes is associated with the birth of new CTCF binding sites. Our data indicate that binding of Drosophila CTCF protein has evolved under natural selection, and CTCF binding evolution has shaped both the evolution of gene expression and genome evolution during the birth of new genes

    Finding Single Copy Genes Out of Sequenced Genomes for Multilocus Phylogenetics in Non-Model Fungi

    Get PDF
    Historically, fungal multigene phylogenies have been reconstructed based on a small number of commonly used genes. The availability of complete fungal genomes has given rise to a new wave of model organisms that provide large number of genes potentially useful for building robust gene genealogies. Unfortunately, cross-utilization of these resources to study phylogenetic relationships in the vast majority of non-model fungi (i.e. “orphan” species) remains an unexamined question. To address this problem, we developed a method coupled with a program named “PHYLORPH” (PHYLogenetic markers for ORPHans). The method screens fungal genomic databases (107 fungal genomes fully sequenced) for single copy genes that might be easily transferable and well suited for studies at low taxonomic levels (for example, in species complexes) in non-model fungal species. To maximize the chance to target genes with informative regions, PHYLORPH displays a graphical evaluation system based on the estimation of nucleotide divergence relative to substitution type. The usefulness of this approach was tested by developing markers in four non-model groups of fungal pathogens. For each pathogen considered, 7 to 40% of the 10–15 best candidate genes proposed by PHYLORPH yielded sequencing success. Levels of polymorphism of these genes were compared with those obtained for some genes traditionally used to build fungal phylogenies (e.g. nuclear rDNA, ÎČ-tubulin, Îł-actin, Elongation factor EF-1α). These genes were ranked among the best-performing ones and resolved accurately taxa relationships in each of the four non-model groups of fungi considered. We envision that PHYLORPH will constitute a useful tool for obtaining new and accurate phylogenetic markers to resolve relationships between closely related non-model fungal species

    Listeria pathogenesis and molecular virulence determinants

    Get PDF
    The gram-positive bacterium Listeria monocytogenes is the causative agent of listeriosis, a highly fatal opportunistic foodborne infection. Pregnant women, neonates, the elderly, and debilitated or immunocompromised patients in general are predominantly affected, although the disease can also develop in normal individuals. Clinical manifestations of invasive listeriosis are usually severe and include abortion, sepsis, and meningoencephalitis. Listeriosis can also manifest as a febrile gastroenteritis syndrome. In addition to humans, L. monocytogenes affects many vertebrate species, including birds. Listeria ivanovii, a second pathogenic species of the genus, is specific for ruminants. Our current view of the pathophysiology of listeriosis derives largely from studies with the mouse infection model. Pathogenic listeriae enter the host primarily through the intestine. The liver is thought to be their first target organ after intestinal translocation. In the liver, listeriae actively multiply until the infection is controlled by a cell-mediated immune response. This initial, subclinical step of listeriosis is thought to be common due to the frequent presence of pathogenic L. monocytogenes in food. In normal indivuals, the continual exposure to listerial antigens probably contributes to the maintenance of anti-Listeria memory T cells. However, in debilitated and immunocompromised patients, the unrestricted proliferation of listeriae in the liver may result in prolonged low-level bacteremia, leading to invasion of the preferred secondary target organs (the brain and the gravid uterus) and to overt clinical disease. L. monocytogenes and L. ivanovii are facultative intracellular parasites able to survive in macrophages and to invade a variety of normally nonphagocytic cells, such as epithelial cells, hepatocytes, and endothelial cells. In all these cell types, pathogenic listeriae go through an intracellular life cycle involving early escape from the phagocytic vacuole, rapid intracytoplasmic multiplication, bacterially induced actin-based motility, and direct spread to neighboring cells, in which they reinitiate the cycle. In this way, listeriae disseminate in host tissues sheltered from the humoral arm of the immune system. Over the last 15 years, a number of virulence factors involved in key steps of this intracellular life cycle have been identified. This review describes in detail the molecular determinants of Listeria virulence and their mechanism of action and summarizes the current knowledge on the pathophysiology of listeriosis and the cell biology and host cell responses to Listeria infection. This article provides an updated perspective of the development of our understanding of Listeria pathogenesis from the first molecular genetic analyses of virulence mechanisms reported in 1985 until the start of the genomic era of Listeria research

    How to best call the somatic mosaic tree?

    No full text
    International audienceA recommendation – based on reviews by two anonymous reviewers – of the article: Schmitt S, Leroy T, Heuertz M, Tysklind N (2022) Somatic mutation detection: a critical evaluation through simulations and reanalyses in oaks. bioRxiv, 2021.10.11.462798. ver. 4 peer-reviewed and recommended by Peer Community in Genomics. https://doi.org/10.1101/2021.10.11.46279

    Pressing NGS data through the mill of Kmer spectra and allelic coverage ratios in order to scan reproductive modes in non-model species

    No full text
    International audienceA recommendation – based on reviews by Paul Simion and two anonymous reviewers – of the article: Jaron KS, Hodson CN, Ellers J, Baird SJ, Ross L (2022) Genomic evidence of paternal genome elimination in the globular springtail Allacma fusca. bioRxiv, 2021.11.12.468426, ver. 5 peer-reviewed and recommended by Peer Community in Evolutionary Biology
    • 

    corecore