75 research outputs found

    Intracardiac Echocardiography during Catheter-Based Ablation of Atrial Fibrillation

    Get PDF
    Accurate delineation of the variable left atrial anatomy is of utmost importance during anatomically based ablation procedures for atrial fibrillation targeting the pulmonary veins and possibly other structures of the atria. Intracardiac echocardiography allows real-time visualisation of the left atrium and adjacent structures and thus facilitates precise guidance of catheter-based ablation of atrial fibrillation. In patients with abnormal anatomy of the atria and/or the interatrial septum, intracardiac ultrasound might be especially valuable to guide transseptal access. Software algorithms like CARTOSound (Biosense Webster, Diamond Bar, USA) offer the opportunity to reconstruct multiple two-dimensional ultrasound fans generated by intracardiac echocardiography to a three-dimensional object which can be merged to a computed tomography or magnetic resonance imaging reconstruction of the left atrium. Intracardiac ultrasound reduces dwell time of catheters in the left atrium, fluoroscopy, and procedural time and is invaluable concerning early identification of potential adverse events. The application of intracardiac echocardiography has the great capability to improve success rates of catheter-based ablation procedures

    Semantic Integration of Identity Data Repositories

    Get PDF
    With the continuously growing number of distributed and heterogeneous IT systems there is the need for structured and efficient identity management (IdM) processes. This implies that new users are created once and then the information is distributed to all applicable software systems same as if changes on existing user objects occur. The central issue is that there is no generally ac-cepted standard for handling this information distribution because each system has its own internal representation of this data. Our approach is to give a se-mantic definition of the digital user objects attributes to ease the mapping process of an abstract user object to the concrete instantiation of each software system. Therefore we created an ontology to define the mapping of users at-tributes as well as an architecture which enables the semantic integration of identity data repositories. Our solution has been tested in an implementation case study

    Early Heparin Administration Reduces Risk for Left Atrial Thrombus Formation during Atrial Fibrillation Ablation Procedures

    Get PDF
    Objective. Despite the use of anticoagulation during left atrial (LA) ablation procedures, ischemic cerebrovascular accidents (CVAs) are recognized as a serious complication. Heparin is usually given after safe transseptal access has been obtained, resulting in a short unprotected dwell time of catheters within the LA, which may account for CVAs. We investigated the frequency of CVAs and LA thrombus formation as detected by intracardiac ultrasound (ICE) depending on the timing of heparin administration. Methods and Results. Sixty LA ablation procedures with the use of ICE were performed in 55 patients. Patients were grouped by heparin administration after (Group I, n = 13) and before (Group II, n = 47) transseptal access. Group I patients were younger (56.6 ± 13.7 versus 65.9 ± 9.9 years, P = .01); other clinical and echocardiographic characteristics did not differ between groups. Early thrombus formation was observed in 2 (15.4%) of group I patients as compared to 0% of group II patients (P = .04). One CVA (2.1%) occurred in one group II patient without prior thrombus detection, and none occurred in group I patients (P = ns). Conclusion. Early administration of heparin reduces the risk of early intracardiac thrombus formation during LA ablation procedures. This did not result in reduced rate of CVAs

    Fatty Acids and their Derivatives as Renewable Platform Molecules for the Chemical Industry

    Get PDF
    Oils and fats of vegetable and animal origin remain an important renewable feedstock for the chemical industry. Their industrial use has increased during the last 10 years from 31 to 51 million tonnes annually. Remarkable achievements made in the field of oleochemistry in this timeframe are summarized herein, including the reduction of fatty esters to ethers, the selective oxidation and oxidative cleavage of C–C double bonds, the synthesis of alkyl-branched fatty compounds, the isomerizing hydroformylation and alkoxycarboxylation, and olefin metathesis. The use of oleochemicals for the synthesis of a great variety of polymeric materials has increased tremendously, too. In addition to lipases and phospholipases, other enzymes have found their way into biocatalytic oleochemistry. Important achievements have also generated new oil qualities in existing crop plants or by using microorganisms optimized by metabolic engineering

    Development and analysis of microstructures for the transplantation of thermally sprayed coatings

    Get PDF
    Thermally sprayed coatings and tribological surfaces are a point of interest in many industrial sectors. They are used for better wear resistance of lightweight materials or for oil retention on surfaces. Lightweight materials are often used in the automotive industry as a weight-saving solution in the production of engine blocks. For this, it is necessary to coat the cylinder liners to ensure wear resistance. In most cases, the coating is sprayed directly onto the surface. Previous research has shown that it is possible to transfer these coatings inversely onto other surfaces. This was achieved with plasma sprayed coatings which were transplanted onto pressure-casted surfaces. These transplanted surfaces exhibited better adhesive strength, smoother surfaces, and lower form deviation compared to directly coated surfaces. Additionally, it was shown that even microstructures of a surface coated by plasma spraying can be transferred to pressure-casted surfaces. This paper presents the development and micromilling of different microstructures for transferring thermally sprayed coatings onto pressure-casted surfaces. In the development process, microstructures with different shapes and aspect ratios as well as thin tribological surfaces are designed in order to evaluate the advantages and limitations of the transplantation process. In subsequent experiments, the micromilling process and a simulation of the coating transplantation are presented and analyzed.DFG/Mo 881/9-1DFG/Bi 498/6-

    Effects of Plasma-Chemical Composition on AISI 316L Surface Modification by Active Screen Nitrocarburizing Using Gaseous and Solid Carbon Precursors

    Get PDF
    Low-temperature plasma nitrocarburizing treatments are applied to improve the surface properties of austenitic stainless steels by forming an expanded austenite layer without impairing the excellent corrosion resistance of the steel. Here, low-temperature active screen plasma nitrocarburizing (ASPNC) was investigated in an industrial-scale cold-wall reactor to compare the effects of two active screen materials: (i) a steel active screen with the addition of methane as a gaseous carbon-containing precursor and (ii) an active screen made of carbon-fibre-reinforced carbon (CFC) as a solid carbon precursor. By using both active screen materials, ASPNC treatments at variable plasma conditions were conducted using AISI 316L. Moreover, insight into the plasma-chemical composition of the H2-N2 plasma for both active screen materials was gained by laser absorption spectroscopy (LAS) combined with optical emission spectroscopy (OES). It was found that, in the case of a CFC active screen in a biased condition, the thickness of the nitrogen-expanded austenite layer increased, while the thickness of the carbon-expanded austenite layer decreased compared to the non-biased condition, in which the nitrogen- and carbon-expanded austenite layers had comparable thicknesses. Furthermore, the crucial role of biasing the workload to produce a thick and homogeneous expanded austenite layer by using a steel active screen was validated

    ICD Shock, Not Ventricular Fibrillation, Causes Elevation of High Sensitive Troponin T after Defibrillation Threshold Testing-The Prospective, Randomized, Multicentre TropShock-Trial

    Get PDF
    Background The placement of an implantable cardioverter defibrillator (ICD) has become routine practice to protect high risk patients from sudden cardiac death. However, implantation-related myocardial micro-damage and its relation to different implantation strategies are poorly characterized. Methods A total of 194 ICD recipients (64 +/- 12 years, 83% male, 95% primary prevention of sudden cardiac death, 35% cardiac resynchronization therapy) were randomly assigned to one of three implantation strategies: (1) ICD implantation without any defibrillation threshold (DFT) testing,(2) estimation of the DFT without arrhythmia induction (modified "upper limit of vulnerability (ULV) testing") or (3) traditional safety margin testing including ventricular arrhythmia induction. High-sensitive Troponin T (hsTnT) levels were determined prior to the implantation and 6 hours after. Results All three groups showed a postoperative increase of hsTnT. The mean delta was 0.031 +/- 0.032 ng/ml for patients without DFT testing, 0.080 +/- 0.067 ng/ml for the modified ULV-testing and 0.064 +/- 0.056 ng/ml for patients with traditional safety margin testing. Delta hsTnT was significantly larger in both of the groups with intraoperative ICD testing compared to the non-testing strategy (p<0.001 each). There was no statistical difference in delta hsTnT between the two groups with intraoperative ICD testing (p = 0.179). Conclusion High-sensitive Troponin T release during ICD implantation is significantly higher in patients with intraoperative ICD testing using shock applications compared to those without testing. Shock applications, with or without arrhythmia induction, did not result in a significantly different delta hsTnT. Hence, the ICD shock itself and not ventricular fibrillation seems to cause myocardial micro-damage

    High‐temperature ternary oxide phases in Ta/Nb‐Alumina composite materials

    Get PDF
    Coarse-grained composites of refractory ceramics and refractory metals are a novel approach for materials at application temperatures up to 1500 °C. Al2_{2}O3_{3} and the refractory metals Nb and Ta are suitable candidates for enhanced thermal shock capability, as they show similar thermal expansion. During fabrication, a key aspect to consider is the possible formation of additional phases upon interaction of the constituent phases as well as through reaction with the environment. X-Ray diffraction (XRD) and investigations of the microstructure with scanning electron microscopy methods unveil Al2_{2}O3_{3}–Nb composite to form NbO, whereas for Al2_{2}O3_{3}–Ta the ternary compound aluminum tantalate (AlTaO4_{4}) is found. Thermodynamic calculations show that the changing oxygen solubility in Nb accounts for the formation of NbO, and explain the absence of a corresponding niobate (AlNbO4) phase. AlTaO4_{4} is identified as the disordered tetragonal high-temperature modification
    corecore