
Semantic Integration of Identity Data Repositories

Christian Emig1, Kim Langer1, Jürgen Biermann², Sebastian Abeck1

1 Cooperation & Management, Universität Karlsruhe (TH), 76128 Karlsruhe
² iC Consult GmbH, Keltenring 14, 82041 Oberhaching

{ emig | langer | abeck } @cm-tm.uka.de, biermann@ic-consult.de

Abstract. With the continuously growing number of distributed and heteroge-
neous IT systems there is the need for structured and efficient identity man-
agement (IdM) processes. This implies that new users are created once and then
the information is distributed to all applicable software systems same as if
changes on existing user objects occur. The central issue is that there is no gen-
erally accepted standard for handling this information distribution because each
system has its own internal representation of this data. Our approach is to give
a semantic definition of the digital user objects’ attributes to ease the mapping
process of an abstract user object to the concrete instantiation of each software
system. Therefore we created an ontology to define the mapping of users’ at-
tributes and an architecture which enables the semantic integration of identity
data repositories. Our solution has been tested and tried in an implementation
case study.

1 Introduction

The desire of enterprises to automate their business processes and to integrate exist-
ing IT solutions to enhance business performance spreads, among others, to the field
of identity management (IdM). IdM can be defined as a set of processes and a sup-
porting infrastructure for the creation, maintenance and use of digital identities (hu-
man users or IT systems) to enable efficient authentication, authorization and access
control [1]. Processes in IdM include user provisioning, decommissioning and audit-
ing [2]. To increase the automation of these processes, there is the need to provide an
integrated view on the data which is being administered (cf. Figure 1), especially the
user-specific data (i.e. the digital identities). This data is stored either stand-alone or
can be directly attached to the business applications where it is employed to enforce
access control. It is held in directories though other data storage solutions such as
relational databases or XML-based files are conceivable as well. The repository may
be distributed over different systems, and in case of a directory-based approach, the
information in the repository is quite often accessible via the Lightweight Directory
Access Protocol (LDAP). A digital identity is the representation of a subject that
includes an identifier (e.g. a unique number), credentials and attributes. To enable
efficient identity management it is important to keep the different identity repositories
synchronized which implies an integration effort. The integration of heterogeneous
data from different data repositories raises several questions that have not been fully
answered yet.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197561014?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Application A

Open
LDAP

Application B

RDBMS

Application C

(Encrypted)
XML

Semantic
Integration Middleware

Syntactic
Heterogeneity

Semantic
Homogeneity

Integrated View

Figure 1. Semantic Integration of Heterogeneous Data

The integration of data can be performed on different tiers of data representation.
The common integration approach is done on a syntactic level, merely pushing bytes
from one integration end to the other with the meaning of data and so the mapping
rules being hard-coded into the synchronization middleware. This approach though is
rather shortsighted since the semantics of data are not being focused and changes in
semantics entail direct changes within the synchronization middleware. Thus a more
mature approach is needed which takes into account the semantics of the data objects
processed. The term semantics in such a context is strongly correlated with ontolo-
gies. They play a key role in sharing a collective understanding of the semantics of
the domain being described. Therefore, ontologies have to be considered when there
is the need to elevate data repository integration to a semantic level and to provide an
integrated view on data.

The two contributions of this paper are:

(1) The definition of an extensible ontology to enable semantic integration of syn-
tactically heterogeneous identity data repositories (cf. chapter 3, "Person Ontology").
When addressing heterogeneity in this context it is important to point out that this
heterogeneity is encountered on a syntactic and structural tier whereas the semantic
tier appears quite homogenous, since all information on the user object in the domain
of identity management is quite similar.

(2) An architecture supporting the semantic integration of identity data reposito-
ries (cf. chapter 4, "Data Repository Container"). Our approach wraps the applica-
tion-specific user directories to a data repository container (DRC) by adding addi-
tional components to the integration architecture.

The paper is organized as follows: Chapter 2 treats the related work about and the

state-of-the-art of semantics in digital identities and how ontologies can ease the
information integration in this context. Furthermore, architectural approaches are
introduced that try to enhance directories to actively propagate local data changes to
other directories. Chapter 3 and 4 describe our conceptual contributions which are
applied in a case study illustrated in chapter 5. A conclusion and an outlook on future
work in this area close the body of the paper.

2 Related Work and State-of-the-Art

2.1 Semantic Aspects

When dealing with the integration of different data sources it is for certain that data
heterogeneity between the various data sources will be encountered. Problems refer-
ring to heterogeneity of data are already widely known within the distributed database
systems community. In [3] it is distinguished between structural and syntactic hetero-
geneity (i.e. schematic heterogeneity) on the one hand and semantic heterogeneity
(i.e. data heterogeneity) on the other hand. Structural heterogeneity means that differ-
ent information systems store their data in different structures (e.g. schema). Semantic
heterogeneity considers the contents of an information item and its intended meaning.
In order to achieve semantic interoperability in a heterogeneous information system,
the meaning of the information that is interchanged has to be understood across the
systems. It is common knowledge that ensuring the semantic interoperability is much
easier when staying in the same semantic domain [4, 5]. Though we are dealing with
different IT systems that are not restricted to a specific domain, we can take advan-
tage of the fact that it is not their business-related part that we are investigating. We
look at very specific data objects: the users along with their identity and access man-
agement related properties.

There have been frequent discussions on how to handle heterogeneity when con-
sidering the semantic level. In [4], how to use ontologies in the context of information
integration is discussed. The authors suggest reducing the hard-coding which does the
translation between the terminologies of pairs of systems by applying ontologies to
the formal specification of the meaning of terms. According to [6], three different
directions can be identified when applying ontologies: single ontology approaches,
multiple ontologies approaches and hybrid approaches being a mixture of both. Sin-
gle ontology approaches use one global ontology providing a shared vocabulary for
the specification of the semantics. All information sources are related to this global
ontology. Single ontology approaches can be applied to integration problems where
all information sources to be integrated provide nearly the same view of a domain.
Using multiple ontology approaches, each information source is described by its own
ontology. Quite often this moves the complexity to an intermediary ontology which is
needed to enable the matching between the different domains. Hybrid approaches
work with local ontologies as well but try to use a globally shared vocabulary or
glossary, which is to be used by the human developer when designing the local on-
tologies. For our approach of enabling semantic integration of identity data reposito-
ries we can take advantage of the fact that the semantics of user-centric identity data
have a common core which can be instantiated at almost all of the existing IT sys-
tems. This facilitates the creation of a single ontology approach describing a person
and his/her attributes which can then be mapped to the different IT systems.

The main causes for semantic heterogeneity are classified in [7]. In our case the
central focus at the semantic level is to address so-called “naming conflicts” that
occur when naming schemes of information differ. “Scaling conflicts” and “con-
founding conflicts” are not to be expected in our scenario. Naming conflicts can oc-

cur if the attribute names of digital identities differ at the various systems. For exam-
ple, think of givenName=’John’ and firstName=’John’. This problem can be ad-
dressed by introducing synonyms which can be handled using ontologies. The granu-
larity of information is a further point to be solved. Problems occur if in the one re-
pository the attributes firstName and lastName exist whilst in the other repository
only the concatenation of both, called commonName can be found. This can also be
solved using ontologies.

The application of ontologies in integration scenarios is described in [5], which
concentrates at the process for the definition of ontologies. The ontology design proc-
ess is regarded as a bottom-up approach taking the schemas of multiple databases as
input and producing as output a single unified database schema combined with a
mapping from the individual databases to the unified database. As the number of IT
systems that apply identity management and access control and therefore need user
objects is enormous, a starting point has to be found where the parts of users’ data are
defined which are not application-specific. This is where the state-of-the-art concern-
ing existing proposals about how to describe users has to be investigated.

Most of the present suggestions concerning how to describe a user are rather sim-
ple – they only deal with the basic properties a person can have. As a starting point
the nearest idea is to examine the directories where the users’ digital identity informa-
tion is stored. The leading standard in this context is LDAP [8]. Though being ex-
pandable by creating new schemata or schema extensions the focus is clearly on the
syntactic and structural layer. Attributes have “meaningful names” and can be de-
scribed using plain text. For the integration of user data objects over more than one
LDAP-based directory, the schema has to be interchanged and implemented at all
participating directories, which reduces flexibility in the integration process. To set
up on the syntactically defined data, simple ontologies have been defined [9, 10].
Further ontologies such as the “Enterprise Ontology” developed by the University of
Edinburgh (available at the ontology library at [11]) also include rather primitive
person classes. There are some other suggestions such as the HR-XML initiative [12].
The HR-XML consortium is a non-commercial and independent organization respon-
sible for the release of a standard human resource vocabulary. Though no knowledge
representation language such as OWL (Ontology Web Language, [13]) is used to
describe the included items, we do use it as a starting point to set-up our person on-
tology as described in chapter 3.

2.2 Architectural Aspects

It is not enough to address only semantics when looking at identity data repository
integration. There must be a way to handle the actual synchronization process over
the different repositories. As repositories usually act passively with respect to event
propagation, it must be possible to determine if a change has occurred in the reposi-
tory. Architecturally different approaches are available which solve this problem.
There is the retro change log (RCL) [14] featured by Sun which is implemented as an
additional sub-tree in the directory server. Using RCL, a record of each change made
to the directory server is stored by duplicating changed objects to a specific sub-tree.
The idea is that external synchronization software checks this sub-tree, takes the in-

formation and finally deletes the entries there. Due to the tight alignment with the
LDAP basis standards this is a very interoperable approach. A major deficiency is the
need to regularly poll the directory there is nothing like a publish/subscribe-based
event propagation. Problems occur if there is more than one remote directory trying
to synchronize, because it is not defined when the last party is informed about the
changed object and when the object can be removed.

The need for a proactive notification in case of changes inside the repository is
described in [15]. There it is argued that an exclusively inactive (i.e. passive) inter-
face to directory services can hinder server scalability and indirectly restrict the be-
havior of potential applications. So the authors propose to extend directory services’
interfaces with a proactive mode with which clients can express their interest in
changes in the environment according to a publish/subscribe paradigm. The problem
of this approach is that only the passiveness is overcome but the semantic heterogene-
ity is not addressed which is still to be handled individually on a 1:1 basis by the
synchronization application. Another solution for enhancing data repositories to pro-
actively propagate data changes is described in [16] but again not on a semantic basis.
The authors implemented an effect similar to a trigger in databases by adding an in-
tercepting gateway which is capable of starting the propagation of data to different
directories based on the content of the invoked action in front of their LDAP-based
directory. This approach moves directories out of their role as a passive data source
but it is strongly bound to LDAP-based directories. There is nothing like an aid in
semantic matching as the point-to-point specific rules have to be hard-coded at the
gateway.

3 Person Ontology

An ontology helps to separate the meaning of data from its representation. Thus the
meaning of data is extracted from applications, databases and directories, and can be
altered independently without having to adjust the data’s representation itself. This
approach offers different advantages. First of all, the use of ontologies can provide a
unified nomenclature for the entities of the domain of interest. It also yields semantic
uniqueness, which implies that entities in the ontology have a distinguishable and
semantically well-defined meaning. Therefore it can be prevented that items that are
syntactically (e.g. their names) but not semantically equal are believed to have the
same meaning. Furthermore the use of an ontology leads to a more flexible integra-
tion since hard-coding of the meaning of data is prevented and changes to that mean-
ing can be made without having to cope with the data itself. Another benefit of on-
tologies is that once a conceptualization of the specific domain has been accom-
plished, it is possible to share this knowledge in a well-defined and formal manner so
that other parties are able to use that knowledge directly. Moreover, if an ontology is
at hand it is possible to conduct consistency checks on its extension. Beyond that it is
feasible to extract implicit knowledge from the ontology’s extension. These facts lead
to the conclusion that sophisticated identity management should be accomplished
using ontologies. In the following an ontology representing the meaning of the person
object will be elaborated in order to overcome the syntactic heterogeneity of user data
within different data repositories.

The development of the person ontology has been tightly aligned to the approach
described in [17]. The first issue that has been addressed in this context is the descrip-
tion of the ontology’s domain. Basically that is the domain of IdM or more precisely
persons’ or users’ identity data. After defining the domain, the next step is to investi-
gate how the ontology will be used and what audience it appeals to. The answer to the
first of these concerns is that it is designed for the integration of syntactically hetero-
geneous data sources holding digital identities. This implies that the main audience to
make use of and augment the ontology will be essentially system integrators and
identity managers responsible for the establishment of processes such as provisioning,
synchronization and decommissioning.

With these prerequisites made explicit we started to enumerate the most important
attributes associated with persons. The heuristics to do so is considering the impor-
tance of the attributes, or in other words the frequency they are encountered, from
existing data representations such as LDAP or HR-XML. Some of the elements that
we have distinguished this way are commonName, address, credentials, title, email,
telephone, fax and birthday. As the next step we split up the elements into (simple)
datatype properties (i.e. attributes) and into complex elements, which we defined as
classes and put into a hierarchy using OWL. Examples for complex types are com-
monName, address and credentials. Additionally, the relationships between these
classes were formalized using object properties. Thereby classes, such as common-
Name and cn have been characterised to be semantically equivalent. However classes
that have divergent meanings such as userPassword from LDAP and password from
HR-XML were marked to be semantically different. Finally the primitive attributes of
each class had to be defined. This was done by using the datatype property construct
provided by OWL. Thereby a special focus was set on the definition of semantically
alike properties to automate the mapping process. To give a short example of the
possible connections between classes, a part of the person class is described: A per-
son has the hasAddress object properties that associates him with the address class.
This address class in turn is a super-class to further classes such as postalAddress. A
postalAddress again is connected to a commonName via the hasCN object property
and holds datatype properties such as street, zipCode, country. A street is assembled
from its streetName along with a houseNumber with and an optional suffix. This is
just a small excerpt from the complete ontology. The major part of the ontology is
reserved for the definition of syntactically divergent terms that have semantically the
same meaning such as the attributes mobile, mobilePhone and mobilePhoneNumber.

We have developed the person ontology using Protégé [18] Version 3.1. The tool
we used to verify OWL-DL conformity is the OWL Validator of WonderWeb [19].
To assure the correctness and consistency of the person ontology we deployed the
Racer DIG (Description Logic Implementation Group) Reasoner [20]. In Figure 2 we
depict an extract of our person ontology, graphically modelled using DLG² [21].
DLG² is a graphically-based language that can be used to simplify the presentation of
RDF (Resource Description Framework) and therefore OWL models. The idea is to
exemplary show the relevant constructs that we have applied in the ontology in a
human readable manner. DLG² enables for a flexible modelling of datatype proper-
ties. They can either be defined inside a class or externally in an ellipse to allow mod-
elling of equivalent properties.

Person
(D) title: xsd:string
(D) email: xsd:string
(D) telephone: xsd:string
(D) fax: xsd:string
(D) birthday: xsd:date
...

Person
(D) title: xsd:string
(D) email: xsd:string
(D) telephone: xsd:string
(D) fax: xsd:string
(D) birthday: xsd:date
...

gn lastName

middleName

owl:equivalentClass or
owl:equivalentProperty

snfirstName

cncn fullNamefullName
rdfs:subClassOf

hasCN

address

(D) city: xsd:string
(D) zipCode: xsd:integer
(D) country: xsd:string
…

address

(D) city: xsd:string
(D) zipCode: xsd:integer
(D) country: xsd:string
…

street

(D) streetName: xsd:string
(D) houseNumber: xsd:integer
(D) suffix: xsd:string

hasAddress

credentialscredentials

postalAddresspostalAddress

owl:objectProperty

hasCN
hasCredentials

owl:disjointWith

hasStreet

owl:DatatypeProperty (D)

surName

commonNamecommonName

givenName

passwordpassworduserPassword

(D) algo.: xsd:string
(D) crypt: xsd:string

owl:classclass

(D) DatatypeProp.

Legend

(D) cleartext:
xsd:string

Figure 2. Person Ontology (Extract in DLG²)

4 Data Repository Container

Defining the semantics of users’ digital identities using a global ontology builds the
first element of the integration’s core. The second is a suitable architecture building
on this ontology and enabling the repository integration as traditional data sources are
not capable of this. At a glance our approach is to extend the traditional, passive iden-
tity data sources by adding further components. We call an enhanced data source data
repository container (DRC). Though a DRC still can act locally and autonomously, it
is to be attached to a specific kind of message broker to which each DRC subscribes
in order to both publish and receive information on changed user objects. In the fol-
lowing sub-chapters we introduce the architecture that we have developed.

4.1 Functional Requirements and Approach

The following functional requirements led to the development of the data repository
container (DRC):

1. The DRC should be capable of handling any kind of common data storage tech-
nology, such as directories, relational database management systems (RDBMS),
XML files or any similar kind of technology. This should be achieved by introducing
an abstraction layer which we called data source wrapper (DSW).

2. To be able to align an incoming user object with the representation of the local
repository, we employ a semantic engine (SE) which does the mapping and filtering
of the incoming attributes to the local ones with the help of the person ontology.

3. Changes in the local source repository must be propagated proactively by the
DRC instead of making the destinations poll the source on a regularly basis. As a
means of interaction, a message-oriented approach should be pursued to enable a
flexible, reliable and loosely-coupled mechanism for the information interchange.
This functionality is put into a component that we call semantic event dispatcher
(SED) that is located inside each DRC and takes care of both sending out and receiv-
ing these event messages containing the changed user objects.

Legend:
SE: Semantic Engine
SED: Semantic Event Dispatcher
DSW: Data Source Wrapper
SR: Source Repository

Data
Repository
Container

SE

DSW

SED

Semantically Enriched Interface

OWL

SR

DRCSR

SE

DSW

SED

DRCSR

SE

DSW

SED

DRCSR

SE

DSW

SED

Semantic
Event

(outgoing)

Semantic
Event

(incoming)

Semantic
Event

(incoming)

Semantic
Event

(incoming)

Event Propagation
Framework

Figure 3. Architecture for Semantic Directory Integration

4. With a growing number of DRCs, a point-to-point connection between all the
containers results in high integration costs due to the n-squared problem when new
data repository containers are being added. This can be avoided by setting up a mes-
sage broker which we call event propagation framework (EPF) and to which every
DRC is connected. Unlike traditional solutions, the basic setup of this EPF can be
rather simple. By offering a standardized interface it is fed by its corresponding SED
if a user object is created or changed (outgoing semantic event from the view of a
DRC) and distributes this information to all DRCs participating (incoming semantic
event).

4.2 Data Source Wrapper

The data source wrapper (DSW) acts as a converter between the underlying technol-
ogy dependent protocol, e.g. LDAP, and a common protocol used to access it. Its
design is based on the wrapper and adapter design pattern described in [22]. The
fundamental idea behind a wrapper or adapter is to map the interface of a class, in this
case the interface of the source repository, to an interface expected by a client. Thus it
solves the problem of interoperability between incompatible interfaces. This is espe-
cially important to reuse functionality; in our case it enables the reuse of the compo-
nents SE and SED. Compared with the SE that is described in the next section and
which accomplishes semantic data integration, the DSW’s job is to ensure interopera-
bility between the SE and the elements on the data layer. Thus it accomplishes a syn-
tactic integration of the source repositories. In conclusion, it becomes possible to
disengage from the underlying protocol and present a uniform interface to the SE.

4.3 Semantic Engine

The semantic engine (SE) constitutes the central element within the DRC’s architec-
ture. Its responsibility is to semantically integrate person data from different sources
based on the person ontology. Thus it performs the mapping of users’ properties. This
means that the SE basically does a semantic transformation from an incoming person
object, either coming from its regular service interface or via notification from other

DRCs via the EPF, to a person object that is expected by the underlying, local reposi-
tory. The SE is based on the proxy design pattern as described by [22]. Therefore it
functions as an interface to the data repository. Accordingly all interaction with the
data repository has to pass the SE. This enables the SE to detect all relevant changes
in the repository. Moreover, the SE can raise events based on the actions performed
on the repository and dispatch these events via the semantic event dispatcher (SED).

4.4 Semantic Event Dispatcher

The data repository containers should be able to exchange events in a flexible, reli-
able and standardized way. To uphold the principle of separation of concerns the SE
should not be responsible for communication issues. Therefore another component is
needed that hides the complexity of message exchange to the SE. This is precisely the
task of the semantic event dispatcher (SED). Its purpose is to expose an interface to
the SE, thus making the interaction logic transparent for the SE. If an event has been
detected by the SE, it is passed to the SED which takes care of the communication
with the event propagation framework. The SED is designed according to the design
pattern façade as introduced by [22]. All logic involving the distribution of events is
delegated to the SED. Events are published on so-called topics. A conceivable exam-
ple of topics in such a context could be <hostname>.update or <hostname>.create. To
get the full information, the subscription of *.* is recommended, but DRCs that are
interested only in updates from a specific DRC could subscribe to the topic <host-
name>.* at the EPF. Parallel to the distribution of events, the SED is also accountable
for the reception of events by subscribing to the relevant topics at the EPF.

4.5 Event Propagation Framework

A central event propagation framework (EPF) is a connector between the DRCs that
reduces point-to-point communication between different DRCs. It acts as the author-
ity responsible for the distribution of the changes in user objects. The DRCs subscribe
at the EPF and there is the possibility to define different topics. The tagging of the
events to specific topics is done by the sending SED, so the EPF acts as a message
broker with all the features as asynchronicity and loose-coupling.

4.6 Collaboration Aspects

Figure 4 illustrates how the components forming the data repository container work
together. This is exemplary shown by a DRC receiving an (incoming) event from the
EPF.

An event sent by the EPF is received by the SED. Each event is associated with a
certain topic it is published on. In order to receive events the SED must have previ-
ously subscribed to the appropriate messaging topic at the EPF. After the SED has
received an event it is passed on to the SE using the processEvent method. The SE
takes on the semantic processing of the event by aligning its syntax to the syntax of
the local DSW based on the person ontology. After this has been accomplished the
appropriate action on the source repository is executed. In this case this action is a
delete operation.

:Data Source Wrapper
(DSW)

:Data Source Wrapper
(DSW)

:Semantic Engine
(SE)

:Semantic Engine
(SE)

:Semantic Event Dispatcher
(SED)

:Semantic Event Dispatcher
(SED)

1: receiveEvent(event, topic)

7: dispatchEvent(event, topic)

2: processEvent(event)

6: dispatchEvent(event)

3: deletePerson(identifier)

5: success

4: deleteObject(identifier)

… EPF

Figure 4. Data Repository Container – Collaboration Diagram

After the action has successfully been performed by the DSW the SE dispatches a
new event since a deletion has occurred. This message is again passed to the SED.
The SED in turn posts the event on a certain topic (e.g. <host-
name>.acknowledgement) so that further DRCs are accurately notified and data con-
sistency is assured. This enables other DRCs or a centralized auditing system to check
if all DRCs have processed a specific event.

5 Implementation Case Study

We have developed our solution to fit into a project context at a major automotive
company. Though our design is mostly technology independent, the preference was
to use Java technology for the actual implementation. With the blue-print of a future
service-oriented architecture (SOA) that is planned, the outer interface of the DRC
was to be implemented as a web service which implies a WSDL-style interface de-
scription as well as SOAP communication. JBoss was the choice considering the
necessary application server which a DRC is deployed to. The wrapping to web ser-
vice interfaces is done by the JBoss internal component WS4EE. The three compo-
nents SE, SED and DSW are implemented as Enterprise Java Beans (EJB). The se-
mantic engine is a stateless session bean and its interface is exposed as a web service
as an enhancement to the simple and proprietary interface of the source repository.
The semantic event dispatcher is implemented as a message driven bean and utilizes
the concepts of Java Messaging Services (JMS) to communicate with the EPF and the
SE. The data source wrapper is implemented as an entity bean representing a stan-
dardized storage for the user objects. The components and their coupling are depicted
in the architectural overview in Figure 5. The semantic engine is supported by a
helper class, the semantic mapper class. This class does the semantic mapping of and
creation of person objects based on the person ontology elaborated in chapter 3. To
access the ontology we use the JENA API [23]. Mapping and transformation are done
based on the knowledge given by the ontology. This means that if further mappings
have to be defined only the ontology must be altered but not the code of the EJBs.

JBoss Application Server
WS4EE

Event
Propagation
Framework

<<Entity Bean>>
Data Source

Wrapper

Open
LDAP

WSDL/
SOAP

JMSJMS

RMI

Data Repository Container

<<Stateless Session Bean>>
Semantic Engine

<<Message Driven Bean>>
Semantic Event

Dispatcher

Figure 5. Case Study – Implementation of a Data Repository Container

In this scenario, various directories had to be synchronized. There was a distinc-
tion between offline and online synchronization. The latter means that change events
are propagated short time after they occurred. We focused on the online synchroniza-
tion. The synchronization application in use was proprietarily developed with indi-
vidual logic for point-to-point synchronization. We set up the EPF as a central mes-
sage broker and attached the corporate meta directory (Sun Directory Server) as well
as the Microsoft Active Directory, PeopleSoft ePeople and Lotus Notes. The overall
amount of classes that have been defined in the ontology is 9. It further contains 71
datatype and object properties. The OWL file has 800 lines and is about 40 kilobytes
in size.

6 Conclusion and Further Work

In this paper a solution for the semantic integration of person objects has been pre-
sented. We have introduced a core set of a person ontology that can be flexibly ex-
tended as well as an architecture enhancing traditional identity repositories to active
and semantic-enabled data repository containers. These enable the integration proc-
ess for user provisioning, decommissioning and synchronization. For the loose cou-
pling of the different data repository containers we developed the event propagation
framework as a message broker. It allows the distribution of events between the dif-
ferent DRCs and centralizes the point-to-point connections.

Currently the development of the ability to dispatch events without the need of an
active change in the source directory is a main issue which must be solved. For ex-
ample the date of a person leaving the company is quite often recorded in advance, so
the SED should be able to dispatch the event automatically at the point of time it is
needed for the overall decommissioning process. Another issue is the implementation
of natural language processing for the semantic engine in order to allow a declarative
data source access. With upcoming service-oriented architecture (SOA) in mind, we
have already applied SOA paradigms like loose coupling and web service interfaces
achieving better interoperability. For a further SOA alignment, the embedding of the
event propagation framework to the enterprise service bus (ESB) of an SOA is to be
tightened.

7 References

1. Burton Group: Concepts and Definitions (Glossary), Version 2.0, September 2005.
2. Phillip J Windley: Digital Identity, O'Reilly Media; 1st edition, August 2005.
3. V. Kashyap and A. Sheth: Schematic and semantic semilarities between database objects:

A context-based approach. The International Journal on Very Large Data Bases, 5(4):276–
304, 1996.

4. Zhan Cui, Dean Jones and Paul O’Brien: Issues in Ontology-based Information Integration,
IJCAI Seattle / USA, 2002.

5. Chris Partridge: The Role of Ontology in Semantic Integration, OOPSLA 2002, Seattle.
6. H.Wache, T. Vögele, U. Visser, H. Stuckenschmidt, G. Schuster, H. Neumann and S.

Hübner: Ontology-Based Integration of Information - A Survey of Existing Approaches,
Intelligent Systems Group, Center for Computing Technologies, University of Bremen,
2001.

7. Cheng Hian Goh. Representing and Reasoning about Semantic Conflicts in Heterogeneous
Information Sources, MIT, 1997.

8. Lightweight Directory Access Protocol (v3). URL: http://www.ietf.org/rfc/rfc2251.txt
9. Li Ding, Harry Chen, Lalana Kagal, Tim Finin: DAML Person Ontology, 2002.
 URL: http://daml.umbc.edu/ontologies/ittalks/person ´
10. UMBC Ebiquity Research Group: Person Ontology.
 URL: http://ebiquity.umbc.edu/ontology/person.owl
11. Standord University: Knowledge Systems Laboratory Ontology Editor, June 2006.
 URL: http://www-ksl-svc.stanford.edu:5915/
12. Homepage of the HR-XML Consortium.
 URL: http://www.hr-xml.org/
13. World Wide Web Consortium (W3C): OWL Web Ontology Language Overview, W3C

Recommendation, February 2004.
 URL: http://www.w3.org/TR/owl-features/
14. Sun: Retro Change Log Plug-In.
 URL: http://docs.sun.com/source/816-6698-10/replicat.html#15790
15. Fabian E. Bustamante, Patrick Widener and Karsten Schwan: A Case for Proactivity in

Directory Services, Proceedings of the 11th IEEE International Symposium on High Per-
formance Distributed Computing (HPDC), 2002.

16. Robert Arlein, Juliana Freire, Narain Gehani, Daniel Lieuwen, and Joann Ordille: Making
LDAP Active with the LTAP Gateway, in Proceedings Workshop on Databases in Tele-
communication, September 1999.

17. Natalya F. Noy and Deborah L. McGuinness: Ontology Development 101: A Guide to
Creating Your First Ontology, Stanford University, Stanford, CA, 94305, 2001.

18. Stanford Medical Informatics: Protégé Ontology Editor, 2005.
URL: http://protege.stanford.edu

19. Sean Bechhofer and Raphael Volz: WonderWeb OWL Ontology Validator, 2003.
 URL: http://phoebus.cs.man.ac.uk:9999/OWL/Validator
20. Racer DIG Reasoner, July 2006.

URL: http://www.racer-systems.com/de/index.phtml, http://dig.sourceforge.net/
21. Xiaoshu Wang, Jonas S. Almeida: DLG2 - A Graphical Presentation Language for RDF

and OWL, 2005.
URL: http://charlestoncore.musc.edu/docs/dlg2.html

22. Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides: Design Patterns, Addison
Wesley, 1998.

23. Hewlett-Packard Development Company: JENA – A Semantic Web Framework for Java,
2005. URL: http://jena.sourceforge.net

http://www.ietf.org/rfc/rfc2251.txt
http://daml.umbc.edu/ontologies/ittalks/person
http://ebiquity.umbc.edu/ontology/person.owl
http://www-ksl-svc.stanford.edu:5915/
http://www.hr-xml.org/
http://www.w3.org/TR/owl-features/
http://docs.sun.com/source/816-6698-10/replicat.html#15790
http://protege.stanford.edu/
http://phoebus.cs.man.ac.uk:9999/OWL/Validator
http://www.racer-systems.com/de/index.phtml
http://dig.sourceforge.net/
http://charlestoncore.musc.edu/docs/dlg2.html
http://jena.sourceforge.net/

	1 Introduction
	2 Related Work and State-of-the-Art
	2.1 Semantic Aspects
	2.2 Architectural Aspects

	3 Person Ontology
	4 Data Repository Container
	4.1 Functional Requirements and Approach
	4.2 Data Source Wrapper
	4.3 Semantic Engine
	4.4 Semantic Event Dispatcher
	4.5 Event Propagation Framework
	4.6 Collaboration Aspects

	5 Implementation Case Study
	6 Conclusion and Further Work
	7 References

