44 research outputs found

    Controlling plasma properties under differing degrees of electronegativity using odd harmonic dual frequency excitation

    Get PDF
    International audienceThe charged particle dynamics in low-pressure oxygen plasmas excited by odd harmonic dual frequency waveforms (low frequency of 13.56 MHz and high frequency of 40.68 MHz) are investigated using a one-dimensional numerical simulation in regimes of both low and high electronegativity. In the low electronegativity regime, the time and space averaged electron and negative ion densities are approximately equal and plasma sustainment is dominated by ionisation at the sheath expansion for all combinations of low and high frequency and the phase shift between them. In the high electronegativity regime, the negative ion density is a factor of 15--20 greater than the low electronegativity cases. In these cases, plasma sustainment is dominated by ionisation inside the bulk plasma and at the collapsing sheath edge when the contribution of the high frequency to the overall voltage waveform is low. As the high frequency component contribution to the waveform increases, sheath expansion ionisation begins to dominate. It is found that the control of the average voltage drop across the plasma sheath and the average ion flux to the powered electrode are similar in both regimes of electronegativity, despite the differing electron dynamics using the considered dual frequency approach. This offers potential for similar control of ion dynamics under a range of process conditions, independent of the electronegativity. This is in contrast to ion control offered by electrically asymmetric waveforms where the relationship between the ion flux and ion bombardment energy is dependent upon the electronegativity

    The role of thermal energy accommodation and atomic recombination probabilities in low pressure oxygen plasmas

    Get PDF
    International audienceSurface interaction probabilities are critical parameters that determine the behaviour of low pressure plasmas and so are crucial input parameters for plasma simulations that play a key role in determining their accuracy. However, these parameters are difficult to estimate without in situ measurements. In this work, the role of two prominent surface interaction probabilities, the atomic oxygen recombination coefficient ? O and the thermal energy accommodation coefficient ? E in determining the plasma properties of low pressure inductively coupled oxygen plasmas are investigated using two-dimensional fluid-kinetic simulations. These plasmas are the type used for semiconductor processing. It was found that ? E plays a crucial role in determining the neutral gas temperature and neutral gas density. Through this dependency, the value of ? E also determines a range of other plasma properties such as the atomic oxygen density, the plasma potential, the electron temperature, and ion bombardment energy and neutral-to-ion flux ratio at the wafer holder. The main role of ? O is in determining the atomic oxygen density and flux to the wafer holder along with the neutral-to-ion flux ratio. It was found that the plasma properties are most sensitive to each coefficient when the value of the coefficient is small causing the losses of atomic oxygen and thermal energy to be surface interaction limited rather than transport limited

    Electron power absorption dynamics in capacitive radio frequency discharges driven by tailored voltage waveforms in CF4

    Get PDF
    The power absorption dynamics of electrons and the electrical asymmetry effect in capacitive radio-frequency plasmas operated in CF4 and driven by tailored voltage waveforms are investigated experimentally in combination with kinetic simulations. The driving voltage waveforms are generated as a superposition of multiple consecutive harmonics of the fundamental frequency of 13.56 MHz. Peaks/valleys and sawtooth waveforms are used to study the effects of amplitude and slope asymmetries of the driving voltage waveform on the electron dynamics and the generation of a DC self-bias in an electronegative plasma at different pressures. Compared to electropositive discharges, we observe strongly different effects and unique power absorption dynamics. At high pressures and high electronegativities, the discharge is found to operate in the drift-ambipolar (DA) heating mode. A dominant excitation/ionization maximum is observed during sheath collapse at the edge of the sheath which collapses fastest. High negative-ion densities are observed inside this sheath region, while electrons are confined for part of the RF period in a potential well formed by the ambipolar electric field at this sheath edge and the collapsed (floating potential) sheath at the electrode. For specific driving voltage waveforms, the plasma becomes divided spatially into two different halves of strongly different electronegativity. This asymmetry can be reversed electrically by inverting the driving waveform. For sawtooth waveforms, the discharge asymmetry and the sign of the DC self-bias are found to reverse as the pressure is increased, due to a transition of the electron heating mode from the α-mode to the DA-mode. These effects are interpreted with the aid of the simulation results

    Prevention of Catalyst Deactivation in the Hydrogenolysis of Glycerol by Ga<sub>2</sub>O<sub>3</sub>-Modified Copper/Zinc Oxide Catalysts

    No full text
    Copper/zinc oxide catalysts prepared by coprecipitation were proved to be highly active and selective in the hydrogenolysis of glycerol. However, they suffer from strong deactivation in the course of reaction. Modifying the CuO/ZnO catalyst with Ga2O3 extremely enhances the stability of the catalyst as even after four consecutive experiments over a Cu/ZnO/Ga2O3 catalyst no deactivation is observed. The catalysts were characterized by temperature-programmed reduction, powder X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy coupled with energy-dispersive X-ray analysis, and inductively coupled plasma optical emission spectrometry. As the Cu/ZnO/Ga2O3 catalyst is stable even under harsh reaction conditions of 220 °C and in the presence of water, a space-time-yield as high as 22.1 gpropylene glycol/(gCu h) can be obtained

    Prevention of Catalyst Deactivation in the Hydrogenolysis of Glycerol by Ga2O3 Modified Copper Zinc Oxide Catalysts

    No full text
    Copper/zinc oxide catalysts prepared by coprecipitation were proved to be highly active and selective in the hydrogenolysis of glycerol. However, they suffer from strong deactivation in the course of reaction. Modifying the CuO/ZnO catalyst with Ga2O3 extremely enhances the stability of the catalyst as even after four consecutive experiments over a Cu/ZnO/Ga2O3 catalyst no deactivation is observed. The catalysts were characterized by temperature-programmed reduction, powder X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy coupled with energy-dispersive X-ray analysis, and inductively coupled plasma optical emission spectrometry. As the Cu/ZnO/Ga2O3 catalyst is stable even under harsh reaction conditions of 220 °C and in the presence of water, a space-time-yield as high as 22.1 gpropylene glycol/(gCu h) can be obtained

    Recipient HLA-G +3142 CC Genotype and Concentrations of Soluble HLA-G Impact on Occurrence of CMV Infection after Living-Donor Kidney Transplantation

    No full text
    The expression modulation of the immunosuppressive non-classical Human leukocyte antigen-G (HLA-G) molecule and its soluble isoforms is an immune evasion strategy being deployed by cytomegalovirus (CMV). The +3142 C&gt;G single nucleotide polymorphism (SNP) located within the 3′ untranslated region (3′UTR) is of crucial importance for the regulation of HLA-G expression. Therefore, we analyzed the influence of the +3142 C&gt;G HLA-G SNP on the occurrence of CMV infection in a cohort of 178 living-donor kidney recipients and their 178 corresponding donors. In addition, soluble HLA-G (sHLA-G) levels were quantified before and after transplantation. The presence of the HLA-G +3142 CC genotype in recipients, but not donors of our cohort as along with elevated sHLA-G levels (≥ 6.1 ng/mL) were associated with higher susceptibility to CMV infection after transplantation. Our results provided evidence that i) HLA-G is implicated in the establishment of CMV after living-donor kidney transplantation and ii) recipient HLA-G +3142 CC genotype and sHLA-G concentration levels could represent important predictive risk markers for CMV infection
    corecore