437 research outputs found

    Stellar laboratories: new Ge V and Ge VI oscillator strengths and their validation in the hot white dwarf RE 0503-289

    Get PDF
    State-of-the-art spectral analysis of hot stars by means of non-LTE model-atmosphere techniques has arrived at a high level of sophistication. The analysis of high-resolution and high-S/N spectra, however, is strongly restricted by the lack of reliable atomic data for highly ionized species from intermediate-mass metals to trans-iron elements. Especially data for the latter has only been sparsely calculated. Many of their lines are identified in spectra of extremely hot, hydrogen-deficient post-AGB stars. A reliable determination of their abundances establishes crucial constraints for AGB nucleosynthesis simulations and, thus, for stellar evolutionary theory. In a previous analysis of the UV spectrum of RE 0503-289, spectral lines of highly ionized Ga, Ge, As, Se, Kr, Mo, Sn, Te, I, and Xe were identified. Individual abundance determinations are hampered by the lack of reliable oscillator strengths. Most of these identified lines stem from Ge V. In addition, we identified Ge VI lines for the first time. We calculated Ge V and Ge VI oscillator strengths to consider their radiative and collisional bound-bound transitions in detail in our non-LTE stellar-atmosphere models for the analysis of the Ge IV - VI spectrum exhibited in high-resolution and high-S/N UV spectra of RE 0503-289. We identify four Ge IV, 37 Ge V, and seven Ge VI lines. Most of these are identified for the first time in any star. We reproduce almost all Ge IV, Ge VI, and Ge VI lines in the observed spectrum of RE 0503-289 (Teff = 70 kK, log g = 7.5) at log Ge = -3.8 +/- 0.3 (mass fraction, about 650 times solar). Reliable measurements and calculations of atomic data are a prerequisite for stellar-atmosphere modeling. Our oscillator-strength calculations have allowed, for the first time, Ge V and Ge VI lines to be successfully reproduced in a white dwarf's spectrum and to determine its photospheric Ge abundance.Comment: 54 pages, 8 figure

    Oscillator Strengths and Damping Constants for Atomic Lines in the J and H Bands

    Full text link
    We have built a line list in the near-infrared J and H bands (1.00-1.34, 1.49-1.80 um) by gathering a series of laboratory and computed line lists. Oscillator strengths and damping constants were computed or obtained by fitting the solar spectrum. The line list presented in this paper is, to our knowledge, the most complete one now available, and supersedes previous lists.Comment: Accepted, Astrophysical Journal Supplement, tentatively scheduled for the Sep. 1999 Vol. 124 #1 issue. Text and tables also available at http://www.iagusp.usp.br/~jorge

    Neutron-Capture Elements in the Early Galaxy: Insights from a Large Sample of Metal-Poor Giants

    Full text link
    New abundances for neutron-capture (n-capture) elements in a large sample of metal-poor giants from the Bond survey are presented. The spectra were acquired with the KPNO 4-m echelle and coude feed spectrographs, and have been analyzed using LTE fine-analysis techniques with both line analysis and spectral synthesis. Abundances of eight n-capture elements (Sr, Y, Zr, Ba, La, Nd, Eu, Dy) in 43 stars have been derived from blue (lambda = 4070--4710, R~20,000, S/N ratio~100-200) echelle spectra and red (lambda = 6100--6180, R~22,000, S/N ratio~100-200) coude spectra, and the abundance of Ba only has been derived from the red spectra for an additional 27 stars. Overall, the abundances show clear evidence for a large star-to-star dispersion in the heavy element-to-iron ratios. The new data also confirm that at metallicities [Fe/H] <~ --2.4, the abundance pattern of the heavy (Z >= 56) n-capture elements in most giants is well-matched to a scaled Solar System r-process nucleosynthesis pattern. The onset of the main r-process can be seen at [Fe/H] ~ --2.9. Contributions from the s-process can first be seen in some stars with metallicities as low as [Fe/H] ~ --2.75, and are present in most stars with metallicities [Fe/H] > --2.3. The lighter n-capture elements (Sr-Y-Zr) are enhanced relative to the heavier r-process element abundances. Their production cannot be attributed solely to any combination of the Solar System r- and main s-processes, but requires a mixture of material from the r-process and from an additional n-capture process which can operate at early Galactic time.Comment: Text + 5 Tables and 11 Figures: Submitted to the Astrophysical Journa

    The IntraCluster Medium: An Invariant Stellar IMF

    Get PDF
    Evidence supporting the hypothesis of an invariant stellar Initial Mass Function is strong and varied. The intra-cluster medium in rich clusters of galaxies is one of the few contrary locations where recent interpretations of the chemical abundances have favoured an IMF that is biased towards massive stars, compared to the `normal' IMF. This interpretation hinges upon the neglect of Type Ia supernovae to the ICM enrichment, and a particular choice of the nucleosynthesis yields of Type II supernovae. We demonstrate here that when one adopts yields determined empirically from observations of Galactic stars, rather than the uncertain model yields, a self-consistent picture may be obtained with an invariant stellar IMF, and about half of the iron in the ICM being produced by Type Ia supernovae.Comment: 9 pages, LateX (aaspp4 macro), including one postscript figure. Accepted, ApJ Letter

    The D/H Ratio in the Interstellar Medium toward the White Dwarf PG0038+199

    Full text link
    We determine the D/H ratio in the interstellar medium toward the DO white dwarf PG0038+199 using spectra from the Far Ultraviolet Spectroscopic Explorer (FUSE), with ground-based support from Keck HIRES. We employ curve of growth, apparent optical depth and profile fitting techniques to measure column densities and limits of many other species (H2, NaI, CI, CII, CIII, NI, NII, OI, SiII, PII, SIII, ArI and FeII) which allow us to determine related ratios such as D/O, D/N and the H2 fraction. Our efforts are concentrated on measuring gas-phase D/H, which is key to understanding Galactic chemical evolution and comparing it to predictions from Big Bang nucleosynthesis. We find column densities log N(HI) = 20.41+-0.08, log N(DI)=15.75+-0.08 and log N(H2) = 19.33+-0.04, yielding a molecular hydrogen fraction of 0.14+-0.02 (2 sigma errors), with an excitation temperature of 143+-5K. The high HI column density implies that PG0038+199 lies outside of the Local Bubble; we estimate its distance to be 297 (+164,-104)pc (1 sigma). D/[HI+2H2] toward PG0038+199 is 1.91(+0.52,-0.42) e-5 (2 sigma). There is no evidence of component structure on the scale of Delta v > 8 km/s based on NaI, but there is marginal evidence for structure on smaller scales. The D/H value is high compared to the majority of recent D/H measurements, but consistent with the values for two other measurements at similar distances. D/O is in agreement with other distant measurements. The scatter in D/H values beyond ~100pc remains a challenge for Galactic chemical evolution.Comment: 59 pages, 7 tables, 18 figures (1 standalone), accepted by ApJ v2 minor typos correcte

    The Chemical Composition and Age of the Metal-Poor Halo Star BD +17^\circ 3248

    Full text link
    We have combined new high-resolution spectra obtained with the Hubble Space Telescope (HST) and ground-based facilities to make a comprehensive new abundance analysis of the metal-poor, halo star BD +17^\circ 3248. We have detected the third r-process peak elements osmium, platinum, and (for the first time in a metal-poor star) gold, elements whose abundances can only be reliably determined using HST. Our observations illustrate a pattern seen in other similar halo stars with the abundances of the heavier neutron-capture elements, including the third r-process peak elements, consistent with a scaled solar system r-process distribution. The abundances of the lighter neutron-capture elements, including germanium and silver, fall below that same scaled solar r-process curve, a result similar to that seen in the ultra-metal-poor star CS 22892--052. A single site with two regimes or sets of conditions, or perhaps two different sites for the lighter and heavier neutron-capture elements, might explain the abundance pattern seen in this star. In addition we have derived a reliable abundance for the radioactive element thorium. We tentatively identify U II at 3859 A in the spectrum of BD +17^\circ 3248, which makes this the second detection of uranium in a very metal-poor halo star. Our combined observations cover the widest range in proton number (from germanium to uranium) thus far of neutron-capture elements in metal-poor Galactic halo stars. Employing the thorium and uranium abundances in comparison with each other and with several stable elements, we determine an average cosmochronological age for BD +17^\circ 3248 of 13.8 +/- 4 Gyr, consistent with that found for other similar metal-poor halo stars.Comment: 58 pages, 4 tables, 11 figures; To appear in ApJ Typo correcte

    Improved Color-Temperature Relations and Bolometric Corrections for Cool Stars

    Full text link
    We present new grids of colors and bolometric corrections for F-K stars having 4000 K < Teff < 6500 K, 0.0 < log g < 4.5 and -3.0 < [Fe/H] < 0.0. A companion paper extends these calculations into the M giant regime. Colors are tabulated for Johnson U-V and B-V; Cousins V-R and V-I; Johnson-Glass V-K, J-K and H-K; and CIT/CTIO V-K, J-K, H-K and CO. We have developed these color-temperature (CT) relations by convolving synthetic spectra with photometric filter-transmission-profiles. The synthetic spectra have been computed with the SSG spectral synthesis code using MARCS stellar atmosphere models as input. Both of these codes have been improved substantially, especially at low temperatures, through the incorporation of new opacity data. The resulting synthetic colors have been put onto the observational systems by applying color calibrations derived from models and photometry of field stars which have Teffs determined by the infrared-flux method. The color calibrations have zero points and slopes which change most of the original synthetic colors by less than 0.02 mag and 5%, respectively. The adopted Teff scale (Bell & Gustafsson 1989) is confirmed by the extraordinary agreement between the predicted and observed angular diameters of the field stars. We have also derived empirical CT relations from the field-star photometry. Except for the coolest dwarfs (Teff < 5000 K), our calibrated, solar-metallicity model colors are found to match these and other empirical relations quite well. Our calibrated, 4 Gyr, solar-metallicity isochrone also provides a good match to color-magnitude diagrams of M67. We regard this as evidence that our calibrated colors can be applied to many astrophysical problems, including modelling the integrated light of galaxies. (abridged)Comment: To appear in the March 2000 issue of the Astronomical Journal. 72 pages including 16 embedded postscript figures (one page each) and 6 embedded postscript tables (18 pages total

    TranspoGene and microTranspoGene: transposed elements influence on the transcriptome of seven vertebrates and invertebrates

    Get PDF
    Transposed elements (TEs) are mobile genetic sequences. During the evolution of eukaryotes TEs were inserted into active protein-coding genes, affecting gene structure, expression and splicing patterns, and protein sequences. Genomic insertions of TEs also led to creation and expression of new functional non-coding RNAs such as micro- RNAs. We have constructed the TranspoGene database, which covers TEs located inside proteincoding genes of seven species: human, mouse, chicken, zebrafish, fruit fly, nematode and sea squirt. TEs were classified according to location within the gene: proximal promoter TEs, exonized TEs (insertion within an intron that led to exon creation), exonic TEs (insertion into an existing exon) or intronic TEs. TranspoGene contains information regarding specific type and family of the TEs, genomic and mRNA location, sequence, supporting transcript accession and alignment to the TE consensus sequence. The database also contains host gene specific data: gene name, genomic location, Swiss-Prot and RefSeq accessions, diseases associated with the gene and splicing pattern. In addition, we created microTranspoGene: a database of human, mouse, zebrafish and nematode TEderived microRNAs. The TranspoGene and micro- TranspoGene databases can be used by researchers interested in the effect of TE insertion on the eukaryotic transcriptome

    On the Absorption of X-rays in the Interstellar Medium

    Full text link
    We present an improved model for the absorption of X-rays in the ISM intended for use with data from future X-ray missions with larger effective areas and increased energy resolution such as Chandra and XMM, in the energy range above 100eV. Compared to previous work, our formalism includes recent updates to the photoionization cross section and revised abundances of the interstellar medium, as well as a treatment of interstellar grains and the H2molecule. We review the theoretical and observational motivations behind these updates and provide a subroutine for the X-ray spectral analysis program XSPEC that incorporates our model.Comment: ApJ, in press, for associated software see http://astro.uni-tuebingen.de/nh
    corecore