495 research outputs found

    Features of Blastocystis spp. in xenic culture revealed by deconvolutional microscopy.

    Get PDF
    Blastocystis spp. are common human enteric parasites with complex morphology and have been reported to cause irritable bowel syndrome (IBS). Deconvolutional microscopy with time-lapse imaging and fluorescent spectroscopy of xenic cultures of Blastocystis spp. from stool samples of IBS patients and from asymptomatic, healthy pigs allowed observations of living organisms in their natural microbial environment. Blastocystis organisms of the vacuolated, granular, amoebic and cystic forms were observed to autofluorescence in the 557/576 emission spectra. Autofluorescence could be distinguished from fluorescein-conjugated Blastocystis-specific antibody labelling in vacuolated and granular forms. This antibody labelled Blastocystis subtypes 1, 3 and 4 but not 5. Surface pores of 1 μm in diameter were observed cyclically opening and closing over 24 h. Vacuolated forms extruded a viscous material from a single surface point with coincident deflation that may demonstrate osmoregulation. Tear-shaped granules were observed exiting from the surface of an amoebic form, but their origin and identity remain unknown

    Emergence of a novel pathogenic poxvirus infection in the endangered green sea turtle (Chelonia mydas) highlights a key threatening process

    Get PDF
    Emerging viral disease is a significant concern, with potential consequences for human, animal and environmental health. Over the past several decades, multiple novel viruses have been found in wildlife species, including reptiles, and often pose a major threat to vulnerable species. However, whilst a large number of viruses have been described in turtles, information on poxvirus in cheloniids remains scarce, with no molecular sequence data available to date. This study characterizes, for the first time, a novel poxvirus, here tentatively designated cheloniid poxvirus 1 (ChePV-1). The affected cutaneous tissue, recovered from a green sea turtle (Chelonia mydas) captured off the Central Queensland coast of Australia, underwent histological examination, transmission electron microscopy (TEM), DNA extraction and genomic sequencing. The novel ChePV-1 was shown to be significantly divergent from other known poxviruses and showed the highest sequence similarity (89.3%) to avipoxviruses (shearwater poxvirus 2 (SWPV2)). This suggests the novel ChePV-1 may have originated from a common ancestor that diverged from an avipoxvirus-like progenitor. The genome contained three predicted unique genes and a further 15 genes being truncated/fragmented compared to SWPV2. This is the first comprehensive study that demonstrates evidence of poxvirus infection in a marine turtle species, as well as a rare example of an avipoxvirus crossing the avian-host barrier. This finding warrants further investigations into poxvirus infections between species in close physical proximity, as well as in vitro and in vivo studies of pathogenesis and disease

    Clinical presentation, progression, and management of five cases of Ross River virus infection in performance horses located in Southeast Queensland: a longitudinal case series

    Get PDF
    Ross River virus (RRV), a mosquito-transmitted alphavirus prevalent in Australia, is believed to cause poor performance, lethargy, and muscle stiffness in Australian horses. However, disease progression and management is poorly documented. A better understanding of disease presentation, acute therapy, and long-term management is required. The aim of the study was to describe clinical presentation, diagnosis, acute treatment, and long-term management of RRV infection in horses. This study is a series of retrospective case reports. Clinical and diagnostic data were obtained from both veterinary records, and owner interviews for five performance horses that presented with acute poor performance coupled with serologic evidence of RRV exposure. Clinical and owner reports were evaluated from the time of presentation until the horses appeared asymptomatic and had returned to normal performance. Ross River virus was suspected to be the cause of generalized muscle stiffness and poor performance in five performance horses located in southeast Queensland between 2011 and 2015. Clinical symptoms included pyrexia, tachypnea, exercise intolerance, generalized muscle stiffness, synovial effusion, and edema of the lower limbs. Serologic investigations (ELISA and/or virus neutralization assay) detected antibody responses to RRV. Horses were treated with nonsteroidal anti-inflammatory drugs (n = 5) and disease-modifying osteoarthritis drugs (n = 2). Most horses returned to previous athletic capabilities between 7 and 12 months after the onset of symptoms. Not all horses in the study had preclinical serology or submitted paired blood samples for serology, meaning assumption of acute infection in those horses was made based on clinical signs coupled with positive serology. Ross River virus is a significant but poorly understood cause of poor performance in Australian horses. This report is the only one to document longitudinal management of performance horses affected by RRV infection. Much more research is needed to gain a better understanding of this infection in horses

    Simultaneous expression of CD4 and CD8 antigens by a substantial proportion of resting porcine T lymphocytes

    Get PDF
    The existence of four subpopulations in resting porcine T lymphocytes is documented. In addition to the two known subpopulations which are typified by a mutually exclusive expression of either the CD8 or the CD4 differentiation antigen, CD4-CD8+ and CD4+CD8- T lymphocytes, respectively, two unusual subpopulations were prominent not only in peripheral blood, but also in lymphoid tissues: CD4-CD8- T lymphocytes expressing neither of these antigens and CD4+CD8+ T lymphocytes coexpressing both antigens. While CD4+CD8+ lymphoblasts have been found also in other species, resting T lymphocytes with that phenotype are without precedent among all species analyzed to date. This unique composition of the porcine T lymphocyte population has to be taken into consideration when the swine is used as a large animal model in experimental medicine

    Susceptibility of Wild Canids to SARS-CoV-2

    Get PDF
    We assessed 2 wild canid species, red foxes (Vulpes vulpes) and coyotes (Canis latrans), for susceptibility to SARS-CoV-2. After experimental inoculation, red foxes became infected and shed infectious virus. Conversely, experimentally challenged coyotes did not become infected; therefore, coyotes are unlikely to be competent hosts for SARS-CoV-2. Throughout the COVID-19 pandemic, multiple instances of natural infections with SARS-CoV-2 have been reported in pet dogs, likely after exposure to an infected human (1–3). Domestic dogs appear to be minimally susceptible to SARS-CoV-2, as indicated by experimental inoculations resulting in reverse transcription PCR–positive samples and low titer antibody responses but no clinical disease nor shedding of infectious virus (4,5). The ability of SARS-CoV-2 to infect domestic dogs, in addition to several other species of carnivores, suggests that additional members of the canid family might be susceptible to infection. Wild canids, such as red foxes (Vulpes vulpes) and coyotes (Canis latrans), are of particular interest given how widely distributed these animals are, their frequent proximity to humans, and that they prey, scavenge upon, or otherwise interact with species demonstrated to be susceptible to SARS-CoV-2, including felids, skunks, rodents, and white-tailed deer (6,7). Foxes (species not specified) have been included in modeling efforts and serosurveillance studies aiming to predict animal hosts of SARS-CoV-2, but their ability to serve as hosts for SARS-CoV-2 remains unclear

    Strain background determines lymphoma incidence in Atm knockout mice

    Get PDF
    About 10% to 30% of patients with ataxia-telangiectasia (A-T) develop leukemias or lymphomas. There is considerable interpatient variation in the age of onset and leukemia/lymphoma type. The incomplete penetrance and variable age of onset may be attributable to several factors. These include competing mortality from other A-T-associated pathologies, particularly neurodegeneration and interstitial lung disease, and allele-specific effects of ataxia-telangiectasia mutated (ATM) gene mutations. There is also limited evidence from clinical observations and studies using Atm knockout mice that modifier genes may account for some variation in leukemia/lymphoma susceptibility. We have introgressed the Atm knockout allele (Atm) onto several inbred murine strains and observed differences in thymic lymphoma incidence and latency between Atm mice on the different strain backgrounds and between their F1 hybrids. The lymphomas that arose in these mice had a pattern of sequence gains and losses that were similar to those previously described by others. These results provide further evidence for the existence of modifier genes controlling lymphomagenesis in individuals carrying defective copies of Atm, at least in mice, and the characterized Atm- congenic strain set provides a resource with which to identify these genes. In addition, we found that fewer than expected Atm pups were weaned on two strain backgrounds and that there was no correlation between body weight of young Atm mice and lymphoma incidence or latency

    The ORF59 DNA polymerase processivity factor homologs of Old World primate RV2 rhadinoviruses are highly conserved nuclear antigens expressed in differentiated epithelium in infected macaques

    Get PDF
    Background ORF59 DNA polymerase processivity factor of the human rhadinovirus, Kaposi's sarcoma-associated herpesvirus (KSHV), is required for efficient copying of the genome during virus replication. KSHV ORF59 is antigenic in the infected host and is used as a marker for virus activation and replication. Results We cloned, sequenced and expressed the genes encoding related ORF59 proteins from the RV1 rhadinovirus homologs of KSHV from chimpanzee (PtrRV1) and three species of macaques (RFHVMm, RFHVMn and RFHVMf), and have compared them with ORF59 proteins obtained from members of the more distantly-related RV2 rhadinovirus lineage infecting the same non-human primate species (PtrRV2, RRV, MneRV2, and MfaRV2, respectively). We found that ORF59 homologs of the RV1 and RV2 Old World primate rhadinoviruses are highly conserved with distinct phylogenetic clustering of the two rhadinovirus lineages. RV1 and RV2 ORF59 C-terminal domains exhibit a strong lineage-specific conservation. Rabbit antiserum was developed against a C-terminal polypeptide that is highly conserved between the macaque RV2 ORF59 sequences. This anti-serum showed strong reactivity towards ORF59 encoded by the macaque RV2 rhadinoviruses, RRV (rhesus) and MneRV2 (pig-tail), with no cross reaction to human or macaque RV1 ORF59 proteins. Using this antiserum and RT-qPCR, we determined that RRV ORF59 is expressed early after permissive infection of both rhesus primary fetal fibroblasts and African green monkey kidney epithelial cells (Vero) in vitro. RRV- and MneRV2-infected foci showed strong nuclear expression of ORF59 that correlated with production of infectious progeny virus. Immunohistochemical studies of an MneRV2-infected macaque revealed strong nuclear expression of ORF59 in infected cells within the differentiating layer of epidermis corroborating previous observations that differentiated epithelial cells are permissive for replication of KSHV-like rhadinoviruses Conclusion The ORF59 DNA polymerase processivity factor homologs of the Old World primate RV1 and RV2 rhadinovirus lineages are phylogenetically distinct yet demonstrate similar expression and localization characteristics that correlate with their use as lineage-specific markers for permissive infection and virus replication. These studies will aid in the characterization of virus activation from latency to the replicative state, an important step for understanding the biology and transmission of rhadinoviruses, such as KSHV

    Prospective Study in a Porcine Model of Sarcoptes scabiei Indicates the Association of Th2 and Th17 Pathways with the Clinical Severity of Scabies

    Get PDF
    BackgroundUnderstanding of scabies immunopathology has been hampered by the inability to undertake longitudinal studies in humans. Pigs are a useful animal model for scabies, and show clinical and immunologic changes similar to those in humans. Crusted scabies can be readily established in pigs by treatment with the glucocorticoid dexamethasone (Dex).Methodology/ Principal FindingsProspective study of 24 pigs in four groups: a) Scabies+/Dex+, b) Scabies+/Dex-, c) Scabies-/Dex+ and d) Scabies-/Dex-. Clinical symptoms were monitored. Histological profiling and transcriptional analysis of skin biopsies was undertaken to compare changes in cell infiltrates and representative cytokines. A range of clinical responses to Sarcoptes scabiei were observed in Dex treated and non-immunosuppressed pigs. An association was confirmed between disease severity and transcription of the Th2 cytokines IL-4 and IL-13, and up-regulation of the Th17 cytokines IL-17 and IL-23 in pigs with crusted scabies. Immunohistochemistry revealed marked infiltration of lymphocytes and mast cells, and strong staining for IL-17.Conclusions/ SignificanceWhile an allergic Th2 type response to scabies has been previously described, these results suggest that IL-17 related pathways may also contribute to immunopathology of crusted scabies. This may lead to new strategies to protect vulnerable subjects from contracting recurrent crusted scabies
    • …
    corecore