14 research outputs found

    Zebrafish dou yan mutation causes patterning defects and extensive cell death in the retina

    Full text link
    The size of an organ is largely determined by the number of cells it contains, which in turn is regulated by two opposing processes, cell proliferation and cell death, however, it is generally not clear how cell proliferation and cell death are coordinated during development. Here, we characterize the zebrafish dou yan mi234 mutation that results in a dramatic reduction of retinal size and a disruption of retinal differentiation and lamination. The retinal size reduction is caused by increased retinal cell death in a non–cell-autonomous manner during early development. The phenotypic defect in dou yan mi234 arises coincident with the onset of retinal neurogenesis and differentiation. Interestingly, unlike many other small eye mutations, the mutation does not increase the level of cell death in the brain, suggesting that the brain and retina use different mechanisms to maintain cell survival. Identification and further study of the dou yan gene will enhance our understanding of the molecular mechanisms regulating retinal cellular homeostasis, i.e., the balance between cell proliferation and cell death. Developmental Dynamics 236:1295–1306, 2007. © 2007 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/56024/1/21148_ftp.pd

    Clinical, neuroradiological and molecular characterization of cerebellar dysplasia with cysts (Poretti-Boltshauser syndrome)

    No full text
    Cerebellar dysplasia with cysts and abnormal shape of the fourth ventricle, in the absence of significant supratentorial anomalies and of muscular involvement, defines recessively inherited Poretti-Boltshauser syndrome (PBS). Clinical features comprise non-progressive cerebellar ataxia, intellectual disability of variable degree, language impairment, ocular motor apraxia and frequent occurrence of myopia or retinopathy. Recently, loss-of-function variants in the LAMA1 gene were identified in six probands with PBS. Here we report the detailed clinical, neuroimaging and genetic characterization of 18 PBS patients from 15 unrelated families. Biallelic LAMA1 variants were identified in 14 families (93%). The only non-mutated proband presented atypical clinical and neuroimaging features, challenging the diagnosis of PBS. Sixteen distinct variants were identified, which were all novel. In particular, the frameshift variant c.[2935delA] recurred in six unrelated families on a shared haplotype, suggesting a founder effect. No LAMA1 variants could be detected in 27 probands with different cerebellar dysplasias or non-progressive cerebellar ataxia, confirming the strong correlate between LAMA1 variants and PBS
    corecore