15 research outputs found

    VERTIGO (VERtical Transport In the Global Ocean) : a study of particle sources and flux attenuation in the North Pacific

    Get PDF
    Author Posting. © Elsevier B.V., 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 55 (2008): 1522-1539, doi:10.1016/j.dsr2.2008.04.024.The VERtical Transport In the Global Ocean (VERTIGO) study examined particle sources and fluxes through the ocean’s “twilight zone” (defined here as depths below the euphotic zone to 1000 m). Interdisciplinary process studies were conducted at contrasting sites off Hawaii (ALOHA) and in the NW Pacific (K2) during 3 week occupations in 2004 and 2005, respectively. We examine in this overview paper the contrasting physical, chemical and biological settings and how these conditions impact the source characteristics of the sinking material and the transport efficiency through the twilight zone. A major finding in VERTIGO is the considerably lower transfer efficiency (Teff) of particulate organic carbon (POC), POC flux 500 / 150 m, at ALOHA (20%) vs. K2 (50%). This efficiency is higher in the diatom-dominated setting at K2 where silica-rich particles dominate the flux at the end of a diatom bloom, and where zooplankton and their pellets are larger. At K2, the drawdown of macronutrients is used to assess export and suggests that shallow remineralization above our 150 m trap is significant, especially for N relative to Si. We explore here also surface export ratios (POC flux/primary production) and possible reasons why this ratio is higher at K2, especially during the first trap deployment. When we compare the 500 m fluxes to deep moored traps, both sites lose about half of the sinking POC by >4000 m, but this comparison is limited in that fluxes at depth may have both a local and distant component. Certainly, the greatest difference in particle flux attenuation is in the mesopelagic, and we highlight other VERTIGO papers that provide a more detailed examination of the particle sources, flux and processes that attenuate the flux of sinking particles. Ultimately, we contend that at least three types of processes need to be considered: heterotrophic degradation of sinking particles, zooplankton migration and surface feeding, and lateral sources of suspended and sinking materials. We have evidence that all of these processes impacted the net attenuation of particle flux vs. depth measured in VERTIGO and would therefore need to be considered and quantified in order to understand the magnitude and efficiency of the ocean’s biological pump.Funding for VERTIGO was provided primarily by research grants from the US National Science Foundation Programs in Chemical and Biological Oceanography (KOB, CHL, MWS, DKS, DAS). Additional US and non-US grants included: US Department of Energy, Office of Science, Biological and Environmental Research Program (JKBB); the Gordon and Betty Moore Foundation (DMK); the Australian Cooperative Research Centre program and Australian Antarctic Division (TWT); Chinese NSFC and MOST programs (NZJ); Research Foundation Flanders and Vrije Universiteit Brussel (FD, ME); JAMSTEC (MCH); New Zealand Public Good Science Foundation (PWB); and internal WHOI sources and a contribution from the John Aure and Cathryn Ann Hansen Buesseler Foundation (KOB)

    Marine pelagic ecosystems: the West Antarctic Peninsula

    Get PDF
    The marine ecosystem of the West Antarctic Peninsula (WAP) extends from the Bellingshausen Sea to the northern tip of the peninsula and from the mostly glaciated coast across the continental shelf to the shelf break in the west. The glacially sculpted coastline along the peninsula is highly convoluted and characterized by deep embayments that are often interconnected by channels that facilitate transport of heat and nutrients into the shelf domain. The ecosystem is divided into three subregions, the continental slope, shelf and coastal regions, each with unique ocean dynamics, water mass and biological distributions. The WAP shelf lies within the Antarctic Sea Ice Zone (SIZ) and like other SIZs, the WAP system is very productive, supporting large stocks of marine mammals, birds and the Antarctic krill, Euphausia superba. Ecosystem dynamics is dominated by the seasonal and interannual variation in sea ice extent and retreat. The Antarctic Peninsula is one among the most rapidly warming regions on Earth, having experienced a 28C increase in the annual mean temperature and a 68C rise in the mean winter temperature since 1950. Delivery of heat from the Antarctic Circumpolar Current has increased significantly in the past decade, sufficient to drive to a 0.68C warming of the upper 300 m of shelf water. In the past 50 years and continuing in the twenty-first century, the warm, moist maritime climate of the northern WAP has been migrating south, displacing the once dominant cold, dry continental Antarctic climate and causing multi-level responses in the marine ecosystem. Ecosystem responses to the regional warming include increased heat transport, decreased sea ice extent and duration, local declines in icedependent AdeÂŽlie penguins, increase in ice-tolerant gentoo and chinstrap penguins, alterations in phytoplankton and zooplankton community composition and changes in krill recruitment, abundance and availability to predators. The climate/ecological gradients extending along theWAPand the presence of monitoring systems, field stations and long-term research programmes make the region an invaluable observatory of climate change and marine ecosystem response

    Enigmatic relationship between chlorophyll a concentrations and photosynthetic rates at Station ALOHA

    Get PDF
    An ordinary least squares (OLS) analysis of the relationship between chlorophyll a (chl a) concentrations and photosynthetic rates at depths of 5 and 25 m at Station ALOHA produced a slope that was only 28% of the mean productivity index at those depths and an intercept at zero chl a that equaled 70% of the mean photosynthetic rate. OLS regression lines are known to produce a slope and intercept that are biased estimates of the true slope and intercept when the explanatory variable, X, is uncontrolled, but in this case the measurement errors and natural variability of the chl a concentrations were much too small to explain the apparent bias. The bias was traceable to the fact that the photosynthetic rates were determined by more than one explanatory variable, a source of variability that is typically overlooked in discussions of OLS bias. Modeling the photosynthetic rates as a function of the product of chl a and surface irradiance produced a much more accurate and realistic description of the data, but the OLS continued to be biased, presumably because the photosynthetic rates were functions of factors in addition to chl a and surface irradiance (e.g., temperature, macronutrients, trace metals, and vitamins). The results underscore the need to recognize that the absence of bias in an OLS when X is not controlled implies that all scatter in the data about the OLS is due to errors in the dependent variable, an unlikely scenario. In most cases, resolution of the bias problem will require identification of the explanatory variables in addition to X that determine the dependent variable

    Refining our understanding of oceanic biogeochemistry and ecosystem functioning

    No full text
    On societally relevant time scales (e.g., decades to centuries), oceanic biological processes sequester large quantities of atmospheric carbon, thereby modulating CO2 concentrations in the lower atmosphere [IPCC, 2001]. The complex physical and biogeochemical interactions that regulate carbon fluxes between the atmosphere and the surface ocean— apparently random physical events, fluctuations in community structure and function, natural climate cycles, and long-term changes in anthropogenic forcing—are best studied within the framework of ocean time-series observations. Such thinking led in 1988 to the initiation of the U.S. JGOFS (Joint Global Ocean Flux Study) time-series programs in the subtropical North Atlantic (BATS = Bermuda Atlantic Time-series Study) and North Pacific (HOT = Hawaii Ocean Time-series), and motivates continuing observations into the foreseeable future. After 14 years of intensive physical, biological, and biogeochemical sampling in these regions, the paradigms that initially guided our understanding and research of ocean ecosystems have been found wanting, and new perspectives have emerged to provide a stimulating foundation for continued investigations

    Revisiting carbon flux through the ocean's twilight zone

    No full text
    The oceanic biological pump drives sequestration of carbon dioxide in the deep sea via sinking particles. Rapid biological consumption and remineralization of carbon in the "twilight zone" (depths between the euphotic zone and 1000 meters) reduce the efficiency of sequestration. By using neutrally buoyant sediment traps to sample this chronically understudied realm, we measured a transfer efficiency of sinking particulate organic carbon between 150 and 500 meters of 20 and 50% at two contrasting sites. This large variability in transfer efficiency is poorly represented in biogeochemical models. If applied globally, this is equivalent to a difference in carbon sequestration of more than 3 petagrams of carbon per year

    Mesoscale eddies drive increased silica export in the subtropical Pacific Ocean

    No full text
    Mesoscale eddies may play a critical role in ocean biogeochemistry by increasing nutrient supply, primary production, and efficiency of the biological pump, that is, the ratio of carbon export to primary production in otherwise nutrient-deficient waters. We examined a diatom bloom within a cold-core cyclonic eddy off Hawai`i. Eddy primary production, community biomass, and size composition were markedly enhanced but had little effect on the carbon export ratio. Instead, the system functioned as a selective silica pump. Strong trophic coupling and inefficient organic export may be general characteristics of community perturbation responses in the warm waters of the Pacific Ocean
    corecore