672 research outputs found

    Wealth and mortality at older ages: a prospective cohort study.

    Get PDF
    BACKGROUND: Despite the importance of socioeconomic position for survival, total wealth, which is a measure of accumulation of assets over the life course, has been underinvestigated as a predictor of mortality. We investigated the association between total wealth and mortality at older ages. METHODS: We estimated Cox proportional hazards models using a sample of 10 305 community-dwelling individuals aged ≥50 years from the English Longitudinal Study of Ageing. RESULTS: 2401 deaths were observed over a mean follow-up of 9.4 years. Among participants aged 50-64 years, the fully adjusted HRs for mortality were 1.21 (95% CI 0.92 to 1.59) and 1.77 (1.35 to 2.33) for those in the intermediate and lowest wealth tertiles, respectively, compared with those in the highest wealth tertile. The respective HRs were 2.54 (1.27 to 5.09) and 3.73 (1.86 to 7.45) for cardiovascular mortality and 1.36 (0.76 to 2.42) and 2.53 (1.45 to 4.41) for other non-cancer mortality. Wealth was not associated with cancer mortality in the fully adjusted model. Similar but less strong associations were observed among participants aged ≥65 years. The use of repeated measurements of wealth and covariates brought about only minor changes, except for the association between wealth and cardiovascular mortality, which became less strong in the younger participants. Wealth explained the associations between paternal occupation at age 14 years, education, occupational class, and income and mortality. CONCLUSIONS: There are persisting wealth inequalities in mortality at older ages, which only partially are explained by established risk factors. Wealth appears to be more strongly associated with mortality than other socioeconomic position measures

    Predicting the microbial exposure risks in urban floods using GIS, building simulation, and microbial models

    Get PDF
    London is expected to experience more frequent periods of intense rainfall and tidal surges, leading to an increase in the risk of flooding. Damp and flooded dwellings can support microbial growth, including mould, bacteria, and protozoa, as well as persistence of flood-borne microorganisms. The amount of time flooded dwellings remain damp will depend on the duration and height of the flood, the contents of the flood water, the drying conditions, and the building construction, leading to particular properties and property types being prone to lingering damp and human pathogen growth or persistence. The impact of flooding on buildings can be simulated using Heat Air and Moisture (HAM) models of varying complexity in order to understand how water can be absorbed and dry out of the building structure. This paper describes the simulation of the drying of building archetypes representative of the English building stock using the EnergyPlus based tool ‘UCL-HAMT’ in order to determine the drying rates of different abandoned structures flooded to different heights and during different seasons. The results are mapped out using GIS in order to estimate the spatial risk across London in terms of comparative flood vulnerability, as well as for specific flood events. Areas of South and East London were found to be particularly vulnerable to long-term microbial exposure following major flood events

    Modelling six sustainable development transformations in Australia and their accelerators, impediments, enablers, and interlinkages

    Full text link
    There is an urgent need to accelerate progress on the Sustainable Development Goals (SDGs) and recent research has identified six critical transformations. It is important to demonstrate how these transformations could be practically accelerated in a national context and what their combined effects would be. Here we bridge national systems modelling with transformation storylines to provide an analysis of a Six Transformations Pathway for Australia. We explore important policies to accelerate progress, synergies and trade-offs, and conditions that determine policy success. We find that implementing policy packages to accelerate each transformation would boost performance on the SDGs by 2030 (+23% above the baseline). Policymakers can maximize transformation synergies through investments in energy decarbonization, resilience, social protection, and sustainable food systems, while managing trade-offs for income and employment. To overcome resistance to transformations, ambitious policy action will need to be underpinned by technological, social, and political enabling conditions

    Goals and processes in a New Zealand primary school

    Get PDF
    In the school setting teachers pursue both cognitive goals, such as the development of mathematics, reading, language, and non-cognitive goals (Le Compte, 1978, 22). The purposes of this study were to determine: (a) the type of non-cognitive goals pursued by primary teachers (b) the processes used in the pursuit of such goals (c) the extent to which the goals reflect 'official' policy

    Simulation of pollution transport in buildings: the importance of taking into account dynamic thermal effects

    Get PDF
    The recent introduction of the Generic Contaminant Model in EnergyPlus allows for the integrated modelling of multizone contaminant and dynamic thermal behaviour within a single simulation package. This article demonstrates how dynamic thermal simulation can modify pollutant transport within a building. PM2.5 infiltration from the external to internal environment under dynamic thermal conditions is compared in CONTAM, EnergyPlus 8.0, and Polluto, an in-house pollutant transport model developed in EnergyPlus 3.1. The influence of internal temperature on indoor PM2.5 levels is investigated by comparing results from standard CONTAM simulations and dynamic thermal EnergyPlus 8 simulations. Circumstances where the predictions of such models can diverge are identified

    Teaching powerful geographical knowledge : a matter of social justice : initial findings from the GeoCapabilities 3 project

    Get PDF
    GeoCapabilities offers an approach for unlocking powerful disciplinary knowledge (PDK) for children. In phase three of the project, we are exploring how far GeoCapabilities ‘works’ for teachers serving communities in challenging socio-economic circumstances. We connect GeoCapabilities to social justice in education, theoretically. Then, using the topic of migration, we discuss initial empirical findings of how teachers understand PDK and their challenges for teaching PDK. Collaborative work between teachers and academics suggests that the social justice dimension of GeoCapabilities could be realised, with appropriate support for teachers. We conclude with a set of principles to inform the future work of GeoCapabilities

    Using building simulation to model the drying of flooded building archetypes

    Get PDF
    With a changing climate, London is expected to experience more frequent periods of intense rainfall and tidal surges, leading to an increase in the risk of flooding. This paper describes the simulation of the drying of flooded building archetypes representative of the London building stock using the EnergyPlus-based hygrothermal tool ‘University College London-Heat and Moisture Transfer (UCL-HAMT)’ in order to determine the relative drying rates of different built forms and envelope designs. Three different internal drying scenarios, representative of conditions where no professional remediation equipment is used, are simulated. A mould model is used to predict the duration of mould growth risk following a flood on the internal surfaces of the different building types. Heating properties while keeping windows open dried dwellings fastest, while purpose built flats and buildings with insulated cavity walls were found to dry slowest

    Indoor PM2.5 exposure in London's domestic stock: Modelling current and future exposures following energy efficient refurbishment

    Get PDF
    Simulations using CONTAM (a validated multi-zone indoor air quality (IAQ) model) are employed to predict indoor exposure to PM2.5 in London dwellings in both the present day housing stock and the same stock following energy efficient refurbishments to meet greenhouse gas emissions reduction targets for 2050. We modelled interventions that would contribute to the achievement of these targets by reducing the permeability of the dwellings to 3 m3 m−2 h−1 at 50 Pa, combined with the introduction of mechanical ventilation and heat recovery (MVHR) systems. It is assumed that the current mean outdoor PM2.5 concentration of 13 μg m−3 decreased to 9 μg m−3 by 2050 due to emission control policies. Our primary finding was that installation of (assumed perfectly functioning) MVHR systems with permeability reduction are associated with appreciable reductions in PM2.5 exposure in both smoking and non-smoking dwellings. Modelling of the future scenario for non-smoking dwellings show a reduction in annual average indoor exposure to PM2.5 of 18.8 μg m−3 (from 28.4 to 9.6 μg m−3) for a typical household member. Also of interest is that a larger reduction of 42.6 μg m−3 (from 60.5 to 17.9 μg m−3) was shown for members exposed primarily to cooking-related particle emissions in the kitchen (cooks). Reductions in envelope permeability without mechanical ventilation produced increases in indoor PM2.5 concentrations; 5.4 μg m−3 for typical household members and 9.8 μg m−3 for cooks. These estimates of changes in PM2.5 exposure are sensitive to assumptions about occupant behaviour, ventilation system usage and the distributions of input variables (±72% for non-smoking and ±107% in smoking residences). However, if realised, they would result in significant health benefits

    Indoor pm2.5 exposure in London's domestic stock: Modeling current and future exposures following energy efficient refurbishment

    Get PDF
    Simulations using CONTAM (a validated multi-zone indoor air quality (IAQ) model) are employed to predict indoor exposure to PM2.5 in London dwellings in both the present day housing stock and the same stock following energy efficient refurbishments to meet greenhouse gas emissions reduction targets for 2050. We modelled interventions that would contribute to the achievement of these targets by reducing the permeability of the dwellings to 3m3m-2hr-1 at 50 Pa, combined with the introduction of mechanical ventilation and heat recovery (MVHR) systems. It is assumed that the current mean outdoor PM2.5 concentration of 13?g.m-3 decreased to 9?g.m-3 by 2050 due to emission control policies. Our primary finding was that installation of (assumed perfectly functioning) MVHR systems with permeability reduction are associated with appreciable reductions in PM2.5 exposure in both smoking and non-smoking dwellings. Modelling of the future scenario for non-smoking dwellings show a reduction in annual average indoor exposure to PM2.5 of 18.8?g.m-3 (from 28.4 to 9.6?g.m-3) for a typical household member. Also of interest is that a larger reduction of 42.6?g.m-3 (from 60.5 to 17.9?g.m-3) was shown for members exposed primarily to cooking-related particle emissions in the kitchen (cooks). Reductions in envelope permeability without mechanical ventilation produced increases in indoor PM2.5 concentrations; 5.4?g.m-3 for typical household members and 9.8?g.m-3 for cooks. These estimates of changes in PM2.5 exposure are sensitive to assumptions about occupant behaviour, ventilation system usage and the distributions of input variables (±72% for non-smoking and ±107% in smoking residences). However, if realised, they would result in significant health benefits

    Housing as a modifier of air contaminant and temperature exposure in Great Britain: A modelling framework

    Get PDF
    This paper presents the development of a modelling framework that quantifies the modifying effect of dwelling characteristics on exposure to indoor air pollution and excess temperature. A georeferenced domestic building stock model of Great Britain was created using national housing surveys, historical weather, and local terrain data. Dynamic building performance simulation was applied to estimate indoor air pollution and overheating risk metrics at the individual building level. These metrics were then aggregated at various geographic units and mapped across Britain within a Geographic Information System (GIS) environment to compare spatial trends. Results indicate that flats and newly built properties are characterised by lower indoor air pollution from outdoor sources, but higher air pollution from indoor sources. Flats, bungalows and newly built, more airtight dwellings are found to be more prone to overheating. Consequently, urban populations may experience higher levels of pollution from indoor sources and overheating resulting from the higher prevalence of flats in cities
    corecore