374 research outputs found

    Goals and processes in a New Zealand primary school

    Get PDF
    In the school setting teachers pursue both cognitive goals, such as the development of mathematics, reading, language, and non-cognitive goals (Le Compte, 1978, 22). The purposes of this study were to determine: (a) the type of non-cognitive goals pursued by primary teachers (b) the processes used in the pursuit of such goals (c) the extent to which the goals reflect 'official' policy

    "Author! Author!" : Shakespeare and biography

    Get PDF
    Original article can be found at: http://www.informaworld.com/smpp/title~content=t714579626~db=all Copyright Informa / Taylor & Francis Group. DOI: 10.1080/17450910902764454Since 1996, not a year has passed without the publication of at least one Shakespeare biography. Yet for many years the place of the author in the practice of understanding literary works has been problematized, and even on occasions eliminated. Criticism reads the “works”, and may or may not refer to an author whose “life” contributed to their meaning. Biography seeks the author in the works, the personality that precedes the works and gives them their characteristic shape and meaning. But the form of literary biography addresses the unusual kind of “life” that puts itself into “works”, and this is particularly challenging where the “works” predominate massively over the salient facts of the “life”. This essay surveys the current terrain of Shakespeare biography, and considers the key questions raised by the medium: can we know anything of Shakespeare's “personality” from the facts of his life and the survival of his works? What is the status of the kind of speculation that inevitably plays a part in biographical reconstruction? Are biographers in the end telling us as much about themselves as they tell us about Shakespeare?Peer reviewe

    A blind detection of a large, complex, Sunyaev--Zel'dovich structure

    Get PDF
    We present an interesting Sunyaev-Zel'dovich (SZ) detection in the first of the Arcminute Microkelvin Imager (AMI) 'blind', degree-square fields to have been observed down to our target sensitivity of 100{\mu}Jy/beam. In follow-up deep pointed observations the SZ effect is detected with a maximum peak decrement greater than 8 \times the thermal noise. No corresponding emission is visible in the ROSAT all-sky X-ray survey and no cluster is evident in the Palomar all-sky optical survey. Compared with existing SZ images of distant clusters, the extent is large (\approx 10') and complex; our analysis favours a model containing two clusters rather than a single cluster. Our Bayesian analysis is currently limited to modelling each cluster with an ellipsoidal or spherical beta-model, which do not do justice to this decrement. Fitting an ellipsoid to the deeper candidate we find the following. (a) Assuming that the Evrard et al. (2002) approximation to Press & Schechter (1974) correctly gives the number density of clusters as a function of mass and redshift, then, in the search area, the formal Bayesian probability ratio of the AMI detection of this cluster is 7.9 \times 10^4:1; alternatively assuming Jenkins et al. (2001) as the true prior, the formal Bayesian probability ratio of detection is 2.1 \times 10^5:1. (b) The cluster mass is MT,200 = 5.5+1.2\times 10^14h-1M\odot. (c) Abandoning a physical model with num- -1.3 70 ber density prior and instead simply modelling the SZ decrement using a phenomenological {\beta}-model of temperature decrement as a function of angular distance, we find a central SZ temperature decrement of -295+36 {\mu}K - this allows for CMB primary anisotropies, receiver -15 noise and radio sources. We are unsure if the cluster system we observe is a merging system or two separate clusters.Comment: accepted MNRAS. 12 pages, 9 figure

    Measurements of Transverse Energy Flow in Deep-Inelastic Scattering at HERA

    Full text link
    Measurements of transverse energy flow are presented for neutral current deep-inelastic scattering events produced in positron-proton collisions at HERA. The kinematic range covers squared momentum transfers Q^2 from 3.2 to 2,200 GeV^2, the Bjorken scaling variable x from 8.10^{-5} to 0.11 and the hadronic mass W from 66 to 233 GeV. The transverse energy flow is measured in the hadronic centre of mass frame and is studied as a function of Q^2, x, W and pseudorapidity. A comparison is made with QCD based models. The behaviour of the mean transverse energy in the central pseudorapidity region and an interval corresponding to the photon fragmentation region are analysed as a function of Q^2 and W.Comment: 26 pages, 8 figures, submitted to Eur. Phys.

    Differential (2+1) Jet Event Rates and Determination of alpha_s in Deep Inelastic Scattering at HERA

    Full text link
    Events with a (2+1) jet topology in deep-inelastic scattering at HERA are studied in the kinematic range 200 < Q^2< 10,000 GeV^2. The rate of (2+1) jet events has been determined with the modified JADE jet algorithm as a function of the jet resolution parameter and is compared with the predictions of Monte Carlo models. In addition, the event rate is corrected for both hadronization and detector effects and is compared with next-to-leading order QCD calculations. A value of the strong coupling constant of alpha_s(M_Z^2)= 0.118+- 0.002 (stat.)^(+0.007)_(-0.008) (syst.)^(+0.007)_(-0.006) (theory) is extracted. The systematic error includes uncertainties in the calorimeter energy calibration, in the description of the data by current Monte Carlo models, and in the knowledge of the parton densities. The theoretical error is dominated by the renormalization scale ambiguity.Comment: 25 pages, 6 figures, 3 tables, submitted to Eur. Phys.

    Energy Flow in the Hadronic Final State of Diffractive and Non-Diffractive Deep-Inelastic Scattering at HERA

    Get PDF
    An investigation of the hadronic final state in diffractive and non--diffractive deep--inelastic electron--proton scattering at HERA is presented, where diffractive data are selected experimentally by demanding a large gap in pseudo --rapidity around the proton remnant direction. The transverse energy flow in the hadronic final state is evaluated using a set of estimators which quantify topological properties. Using available Monte Carlo QCD calculations, it is demonstrated that the final state in diffractive DIS exhibits the features expected if the interaction is interpreted as the scattering of an electron off a current quark with associated effects of perturbative QCD. A model in which deep--inelastic diffraction is taken to be the exchange of a pomeron with partonic structure is found to reproduce the measurements well. Models for deep--inelastic epep scattering, in which a sizeable diffractive contribution is present because of non--perturbative effects in the production of the hadronic final state, reproduce the general tendencies of the data but in all give a worse description.Comment: 22 pages, latex, 6 Figures appended as uuencoded fil

    Multiplicity Structure of the Hadronic Final State in Diffractive Deep-Inelastic Scattering at HERA

    Get PDF
    The multiplicity structure of the hadronic system X produced in deep-inelastic processes at HERA of the type ep -> eXY, where Y is a hadronic system with mass M_Y< 1.6 GeV and where the squared momentum transfer at the pY vertex, t, is limited to |t|<1 GeV^2, is studied as a function of the invariant mass M_X of the system X. Results are presented on multiplicity distributions and multiplicity moments, rapidity spectra and forward-backward correlations in the centre-of-mass system of X. The data are compared to results in e+e- annihilation, fixed-target lepton-nucleon collisions, hadro-produced diffractive final states and to non-diffractive hadron-hadron collisions. The comparison suggests a production mechanism of virtual photon dissociation which involves a mixture of partonic states and a significant gluon content. The data are well described by a model, based on a QCD-Regge analysis of the diffractive structure function, which assumes a large hard gluonic component of the colourless exchange at low Q^2. A model with soft colour interactions is also successful.Comment: 22 pages, 4 figures, submitted to Eur. Phys. J., error in first submission - omitted bibliograph

    Multi-Jet Event Rates in Deep Inelastic Scattering and Determination of the Strong Coupling Constant

    Get PDF
    Jet event rates in deep inelastic ep scattering at HERA are investigated applying the modified JADE jet algorithm. The analysis uses data taken with the H1 detector in 1994 and 1995. The data are corrected for detector and hadronization effects and then compared with perturbative QCD predictions using next-to-leading order calculations. The strong coupling constant alpha_S(M_Z^2) is determined evaluating the jet event rates. Values of alpha_S(Q^2) are extracted in four different bins of the negative squared momentum transfer~\qq in the range from 40 GeV2 to 4000 GeV2. A combined fit of the renormalization group equation to these several alpha_S(Q^2) values results in alpha_S(M_Z^2) = 0.117+-0.003(stat)+0.009-0.013(syst)+0.006(jet algorithm).Comment: 17 pages, 4 figures, 3 tables, this version to appear in Eur. Phys. J.; it replaces first posted hep-ex/9807019 which had incorrect figure 4

    Low Q^2 Jet Production at HERA and Virtual Photon Structure

    Get PDF
    The transition between photoproduction and deep-inelastic scattering is investigated in jet production at the HERA ep collider, using data collected by the H1 experiment. Measurements of the differential inclusive jet cross-sections dsigep/dEt* and dsigmep/deta*, where Et* and eta* are the transverse energy and the pseudorapidity of the jets in the virtual photon-proton centre of mass frame, are presented for 0 < Q2 < 49 GeV2 and 0.3 < y < 0.6. The interpretation of the results in terms of the structure of the virtual photon is discussed. The data are best described by QCD calculations which include a partonic structure of the virtual photon that evolves with Q2.Comment: 20 pages, 5 Figure

    Hadron Production in Diffractive Deep-Inelastic Scattering

    Get PDF
    Characteristics of hadron production in diffractive deep-inelastic positron-proton scattering are studied using data collected in 1994 by the H1 experiment at HERA. The following distributions are measured in the centre-of-mass frame of the photon dissociation system: the hadronic energy flow, the Feynman-x (x_F) variable for charged particles, the squared transverse momentum of charged particles (p_T^{*2}), and the mean p_T^{*2} as a function of x_F. These distributions are compared with results in the gamma^* p centre-of-mass frame from inclusive deep-inelastic scattering in the fixed-target experiment EMC, and also with the predictions of several Monte Carlo calculations. The data are consistent with a picture in which the partonic structure of the diffractive exchange is dominated at low Q^2 by hard gluons.Comment: 16 pages, 6 figures, submitted to Phys. Lett.
    corecore