34 research outputs found

    Hepatocyte ABCA1 Deletion Impairs Liver Insulin Signaling and Lipogenesis

    Get PDF
    Plasma membrane (PM) free cholesterol (FC) is emerging as an important modulator of signal transduction. Here, we show that hepatocyte-specific knockout (HSKO) of the cellular FC exporter, ATPbinding cassette transporter A1 (ABCA1), leads to decreased PM FC content and defective trafficking of lysosomal FC to the PM. Compared with controls, chow-fed HSKO mice had reduced hepatic (1) insulin- stimulated Akt phosphorylation, (2) activation of the lipogenic transcription factor Sterol Regulatory Element Binding Protein (SREBP)-1c, and (3) lipogenic gene expression. Consequently, Westerntype diet-fed HSKO mice were protected from steatosis. Surprisingly, HSKO mice had intact glucose metabolism; they showed normal gluconeogenic gene suppression in response to re-feeding and normal glucose and insulin tolerance. We conclude that: (1) ABCA1 maintains optimal hepatocyte PM FC, through intracellular FC trafficking, for efficient insulin signaling; and (2) hepatocyte ABCA1 deletion produces a form of selective insulin resistance so that lipogenesis is suppressed but glucose metabolism remains normal

    Diet rapidly and reproducibly alters the human gut microbiome

    Get PDF
    Long-term diet influences the structure and activity of the trillions of microorganisms residing in the human gut1–5, but it remains unclear how rapidly and reproducibly the human gut microbiome responds to short-term macronutrient change. Here, we show that the short-term consumption of diets composed entirely of animal or plant products alters microbial community structure and overwhelms inter-individual differences in microbial gene expression. The animal-based diet increased the abundance of bile-tolerant microorganisms (Alistipes, Bilophila, and Bacteroides) and decreased the levels of Firmicutes that metabolize dietary plant polysaccharides (Roseburia, Eubacterium rectale, and Ruminococcus bromii). Microbial activity mirrored differences between herbivorous and carnivorous mammals2, reflecting trade-offs between carbohydrate and protein fermentation. Foodborne microbes from both diets transiently colonized the gut, including bacteria, fungi, and even viruses. Finally, increases in the abundance and activity of Bilophila wadsworthia on the animal-based diet support a link between dietary fat, bile acids, and the outgrowth of microorganisms capable of triggering inflammatory bowel disease6. In concert, these results demonstrate that the gut microbiome can rapidly respond to altered diet, potentially facilitating the diversity of human dietary lifestyles

    Fructose and glucose can regulate mammalian target of rapamycin complex 1 and lipogenic gene expression via distinct pathways

    No full text
    International audienceAlthough calorically equivalent to glucose, fructose appears to be more lipogenic, promoting dyslipidemia, fatty liver disease, cardiovascular disease, and diabetes. To better understand how fructose induces lipogenesis, we compared the effects of fructose and glucose on mammalian target of rapamycin complex 1 (mTORC1), which appeared to have both positive and negative effects on lipogenic gene expression. We found that fructose acutely and transiently suppressed mTORC1 signalingin vitroandin vivoThe constitutive activation of mTORC1 reduced hepatic lipogenic gene expression and produced hypotriglyceridemia after 1 week of fructose feeding. In contrast, glucose did not suppress mTORC1, and the constitutive activation of mTORC1 failed to suppress plasma triglycerides after 1 week of glucose feeding. Thus, these data reveal fundamental differences in the signaling pathways used by fructose and glucose to regulate lipid metabolism

    Hepatocyte ABCA1 Deletion Impairs Liver Insulin Signaling and Lipogenesis

    Get PDF
    Plasma membrane (PM) free cholesterol (FC) is emerging as an important modulator of signal transduction. Here, we show that hepatocyte-specific knockout (HSKO) of the cellular FC exporter, ATPbinding cassette transporter A1 (ABCA1), leads to decreased PM FC content and defective trafficking of lysosomal FC to the PM. Compared with controls, chow-fed HSKO mice had reduced hepatic (1) insulin- stimulated Akt phosphorylation, (2) activation of the lipogenic transcription factor Sterol Regulatory Element Binding Protein (SREBP)-1c, and (3) lipogenic gene expression. Consequently, Westerntype diet-fed HSKO mice were protected from steatosis. Surprisingly, HSKO mice had intact glucose metabolism; they showed normal gluconeogenic gene suppression in response to re-feeding and normal glucose and insulin tolerance. We conclude that: (1) ABCA1 maintains optimal hepatocyte PM FC, through intracellular FC trafficking, for efficient insulin signaling; and (2) hepatocyte ABCA1 deletion produces a form of selective insulin resistance so that lipogenesis is suppressed but glucose metabolism remains normal

    Insulin Dissociates the Effects of Liver X Receptor on Lipogenesis, Endoplasmic Reticulum Stress, and Inflammation

    No full text
    IF 4.258International audienceDiabetes is characterized by increased lipogenesis as well as increased endoplasmic reticulum (ER) stress and inflammation. The nuclear hormone receptor liver X receptor (LXR) is induced by insulin and is a key regulator of lipid metabolism. It promotes lipogenesis and cholesterol efflux, but suppresses endoplasmic reticulum stress and inflammation. The goal of these studies was to dissect the effects of insulin on LXR action. We used antisense oligonucleotides to knock down Lxr alpha in mice with hepatocytespecific deletion of the insulin receptor and their controls. We found, surprisingly, that knock-out of the insulin receptor and knockdown of Lxr alpha produced equivalent, non-additive effects on the lipogenic genes. Thus, insulin was unable to induce the lipogenic genes in the absence of Lxr alpha, and LXR alpha was unable to induce the lipogenic genes in the absence of insulin. However, insulin was not required for LXR alpha to modulate the phospholipid profile, or to suppress genes in the ER stress or inflammation pathways. These data show that insulin is required specifically for the lipogenic effects of LXR alpha and that manipulation of the insulin signaling pathway could dissociate the beneficial effects of LXR on cholesterol efflux, inflammation, and ER stress from the negative effects on lipogenesis

    Hepatic Insulin Signaling Is Required for Obesity-Dependent Expression of SREBP-1c mRNA but Not for Feeding-Dependent Expression

    Get PDF
    SummaryDissecting the role of insulin in the complex regulation of triglyceride metabolism is necessary for understanding dyslipidemia and steatosis. Liver insulin receptor knockout (LIRKO) mice show that in the physiological context of feeding, hepatic insulin signaling is not required for the induction of mTORC1, an upstream activator of the lipogenic regulator, SREBP-1c. Feeding induces SREBP-1c mRNA in LIRKO livers, though not to the extent observed in controls. A high fructose diet also partially induces SREBP-1c and lipogenic gene expression in LIRKO livers. Insulin signaling becomes more important in the pathological context of obesity, as knockdown of the insulin receptor in ob/ob mice, a model of Type 2 diabetes, using antisense oligonucleotides, abolishes the induction of SREBP-1c and its targets by obesity and ameliorates steatosis. Thus, insulin-independent signaling pathways can partially compensate for insulin in the induction of SREBP-1c by feeding but the further induction by obesity/Type 2 diabetes is entirely dependent upon insulin
    corecore