35 research outputs found

    Engineering a Vascularized 3D Hybrid System to Model Tumor-Stroma Interactions in Breast Cancer

    Get PDF
    The stromal microenvironment of breast tumors, namely the vasculature, has a key role in tumor development and metastatic spread. Tumor angiogenesis is a coordinated process, requiring the cooperation of cancer cells, stromal cells, such as fibroblasts and endothelial cells, secreted factors and the extracellular matrix (ECM). In vitro models capable of capturing such complex environment are still scarce, but are pivotal to improve success rates in drug development and screening. To address this challenge, we developed a hybrid alginate-based 3D system, combining hydrogel-embedded mammary epithelial cells (parenchymal compartment) with a porous scaffold co-seeded with fibroblasts and endothelial cells (vascularized stromal compartment). For the stromal compartment, we used porous alginate scaffolds produced by freeze-drying with particle leaching, a simple, low-cost and non-toxic approach that provided storable ready-to-use scaffolds fitting the wells of standard 96-well plates. Co-seeded endothelial cells and fibroblasts were able to adhere to the surface, spread and organize into tubular-like structures. For the parenchymal compartment, a designed alginate gel precursor solution load with mammary epithelial cells was added to the pores of pre-vascularized scaffolds, forming a hydrogel in situ by ionic crosslinking. The 3D hybrid system supports epithelial morphogenesis in organoids/tumoroids and endothelial tubulogenesis, allowing heterotypic cell-cell and cell-ECM interactions, while presenting excellent experimental tractability for whole-mount confocal microscopy, histology and mild cell recovery for down-stream analysis. It thus provides a unique 3D in vitro platform to dissect epithelial-stromal interactions and tumor angiogenesis, which may assist in the development of selective and more effective anticancer therapies.We would like to acknowledge FEDER – Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020 – Operational Programme Competitiveness and Internationalization (POCI), Portugal 2020, and Portuguese funds through FCT – Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia e Ensino Superior in the framework of Project ANGIONICHE (POCI-01-0145-FEDER-028744 and PTDC/BTMMAT/28744/2017). The authors thank FCT for research contract DL 57/2016/CP1360/CT0006 (SB), junior research contract in the framework of the project Angioniche (AT), and IF research position IF/00296/2015 (CB)

    ECM-enriched alginate hydrogels for bioartificial pancreas: an ideal niche to improve insulin secretion and diabetic glucose profile

    Get PDF
    Introduction: The success of a bioartificial pancreas crucially depends on ameliorating encapsulated beta cells survival and function. By mimicking the cellular in vivo niche, the aim of this study was to develop a novel model for beta cells encapsulation capable of establishing an appropriate microenvironment that supports interactions between cells and extracellular matrix (ECM) components. Methods: ECM components (Arg-Gly-Asp, abbreviated as RGD) were chemically incorporated in alginate hydrogels (alginate-RGD). After encapsulation, INS-1E beta cells outcome was analyzed in vitro and after their implantation in an animal model of diabetes. Results: Our alginate-RGD model demonstrated to be a good in vitro niche for supporting beta cells viability, proliferation, and activity, namely by improving the key feature of insulin secretion. RGD peptides promoted cell–matrix interactions, enhanced endogenous ECM components expression, and favored the assembly of individual cells into multicellular spheroids, an essential configuration for proper beta cell functioning. In vivo, our pivotal model for diabetes treatment exhibited an improved glycemic profile of type 2 diabetic rats, where insulin secreted from encapsulated cells was more efficiently used. Conclusions: We were able to successfully introduce a novel valuable function in an old ally in biomedical applications, the alginate. The proposed alginate-RGD model stands out as a promising approach to improve beta cells survival and function, increasing the success of this therapeutic strategy, which might greatly improve the quality of life of an increasing number of diabetic patients worldwide.The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by FCT/MEC through National Funds and co-financed by FEDER through the PT2020 Partnership Agreement under the 4293 Unit I&D, FCT Strategic Project PEst-C/SAU/UI3282/2011-2013 and UID/NEU/04539/2013, FCT in the framework of project UID/BIM/04293/2013, FCT in the framework of project IF/00939/2013/CP1179/CT0001, FCT for Joana Crisóstomo (grant number SFRH/BD/72964/2010), FCT for Sílvia J Bidarra (grant number SFRH/BPD/80571/2011), and FCT and POPH/ESF (EC) for Cristina C Barrias research position FCT Investigator (IF2013)

    In Vitro Model of Vascularized Bone: Synergizing Vascular Development and Osteogenesis

    Get PDF
    Tissue engineering provides unique opportunities for regenerating diseased or damaged tissues using cells obtained from tissue biopsies. Tissue engineered grafts can also be used as high fidelity models to probe cellular and molecular interactions underlying developmental processes. In this study, we co-cultured human umbilical vein endothelial cells (HUVECs) and human mesenchymal stem cells (MSCs) under various environmental conditions to elicit synergistic interactions leading to the colocalized development of capillary-like and bone-like tissues. Cells were encapsulated at the 1∶1 ratio in fibrin gel to screen compositions of endothelial growth medium (EGM) and osteogenic medium (OM). It was determined that, to form both tissues, co-cultures should first be supplied with EGM followed by a 1∶1 cocktail of the two media types containing bone morphogenetic protein-2. Subsequent studies of HUVECs and MSCs cultured in decellularized, trabecular bone scaffolds for 6 weeks assessed the effects on tissue construct of both temporal variations in growth-factor availability and addition of fresh cells. The resulting grafts were implanted subcutaneously into nude mice to determine the phenotype stability and functionality of engineered vessels. Two important findings resulted from these studies: (i) vascular development needs to be induced prior to osteogenesis, and (ii) the addition of additional hMSCs at the osteogenic induction stage improves both tissue outcomes, as shown by increased bone volume fraction, osteoid deposition, close proximity of bone proteins to vascular networks, and anastomosis of vascular networks with the host vasculature. Interestingly, these observations compare well with what has been described for native development. We propose that our cultivation system can mimic various aspects of endothelial cell – osteogenic precursor interactions in vivo, and could find utility as a model for studies of heterotypic cellular interactions that couple blood vessel formation with osteogenesis

    Gelatin microparticles aggregates as three-dimensional scaffolding system in cartilage engineering

    Get PDF
    A three-dimensional (3D) scaffolding system for chondrocytes culture has been produced by agglomeration of cells and gelatin microparticles with a mild centrifuging process. The diameter of the microparticles, around 10 μ, was selected to be in the order of magnitude of the chondrocytes. No gel was used to stabilize the construct that maintained consistency just because of cell and extracellular matrix (ECM) adhesion to the substrate. In one series of samples the microparticles were charged with transforming growth factor, TGF-β1. The kinetics of growth factor delivery was assessed. The initial delivery was approximately 48 % of the total amount delivered up to day 14. Chondrocytes that had been previously expanded in monolayer culture, and thus dedifferentiated, adopted in this 3D environment a round morphology, both with presence or absence of growth factor delivery, with production of ECM that intermingles with gelatin particles. The pellet was stable from the first day of culture. Cell viability was assessed by MTS assay, showing higher absorption values in the cell/unloaded gelatin microparticle pellets than in cell pellets up to day 7. Nevertheless the absorption drops in the following culture times. On the contrary the cell viability of cell/TGF-β1 loaded gelatin microparticle pellets was constant during the 21 days of culture. The formation of actin stress fibres in the cytoskeleton and type I collagen expression was significantly reduced in both cell/gelatin microparticle pellets (with and without TGF-β1) with respect to cell pellet controls. Total type II collagen and sulphated glycosaminoglycans quantification show an enhancement of the production of ECM when TGF-β1 is delivered, as expected because this growth factor stimulate the chondrocyte proliferation and improve the functionality of the tissue.JLGR acknowledge the support of the Spanish Ministry of Education through project No. MAT2010-21611-C03-01 (including the FEDER financial support). The support of the Instituto de Salud Carlos III (ISCIII) through the CIBER initiative of the Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) is also acknowledged

    Translational considerations in injectable cell-based therapeutics for neurological applications: concepts, progress and challenges

    Get PDF
    Significant progress has been made during the past decade towards the clinical adoption of cell-based therapeutics. However, existing cell-delivery approaches have shown limited success, with numerous studies showing fewer than 5% of injected cells persisting at the site of injection within days of transplantation. Although consideration is being increasingly given to clinical trial design, little emphasis has been given to tools and protocols used to administer cells. The different behaviours of various cell types, dosing accuracy, precise delivery, and cell retention and viability post-injection are some of the obstacles facing clinical translation. For efficient injectable cell transplantation, accurate characterisation of cellular health post-injection and the development of standardised administration protocols are required. This review provides an overview of the challenges facing effective delivery of cell therapies, examines key studies that have been carried out to investigate injectable cell delivery, and outlines opportunities for translating these findings into more effective cell-therapy interventions

    Reshaping in vitro Models of Breast Tissue: Integration of Stromal and Parenchymal Compartments in 3D Printed Hydrogels

    No full text
    Breast tissue consists of an epithelial parenchyma embedded in stroma, of heterogeneous and complex composition, undergoing several morphological and functional alterations throughout females' lifespan. Improved knowledge on the crosstalk between parenchymal and stromal mammary cells should provide important insights on breast tissue dynamics, both under healthy and diseased states. Here, we describe an advanced 3D in vitro model of breast tissue, combining multiple components, namely stromal cells and their extracellular matrix (ECM), as well as parenchymal epithelial cells, in a hybrid system. To build the model, porous scaffolds were produced by extrusion 3D printing of peptide-modified alginate hydrogels, and then populated with human mammary fibroblasts. Seeded fibroblasts were able to adhere, spread and produce endogenous ECM, providing adequate coverage of the scaffold surface, without obstructing the pores. On a second stage, a peptide-modified alginate pre-gel laden with mammary gland epithelial cells was used to fill the scaffold's pores, forming a hydrogel in situ by ionic crosslinking. Throughout time, epithelial cells formed prototypical mammary acini-like structures, in close proximity with fibroblasts and their ECM. This generated a heterotypic 3D model that partially recreates both stromal and parenchymal compartments of breast tissue, promoting cell-cell and cell-matrix crosstalk. Furthermore, the hybrid system could be easily dissolved for cell recovery and subsequent analysis by standard cellular/molecular assays. In particular, we show that retrieved cell populations could be discriminated by flow cytometry using cell-type specific markers. This integrative 3D model stands out as a promising in vitro platform for studying breast stroma-parenchyma interactions, both under physiological and pathological settings.This work was supported by FEDER (Fundo Europeu de Desenvolvimento Regional) funds through COMPETE2020-POCI (Operacional Programme for Competitiveness and Internationalization), Portugal 2020, and by Portuguese funds through FCT (Fundação para a Ciencia e a Tecnologia, Ministerio da Ciencia, Tecnologia e Ensino Superior), in the framework of the project 3DEMT funded by POCI via FEDER (POCI-01-0145-FEDER-016627) and by FCT via OE (PTDC/BBB-ECT/2518/2014). The authors thank FCT for Ph.D. grant SFRH/BD/131757/2017 (PB), research contract DL 57/2016/CP1360/CT0006 (SB), postdoctoral research contract in the framework of the project IBEROS with the support of Programa de Cooperação Transfronteiriça Interreg España-Portugal 2014-2020 (POCTEP) (SN), and IF research position IF/00296/2015 (CB). The authors also acknowledge the support of the i3S Scientific Bioimaging Platform, member of the PPBI (PPBI-POCI-01-0145-FEDER-022122) and the Biointerfaces and Nanotechnology Platform (UID/BIM/04293/2019)
    corecore