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Translational considerations in injectable cell-based
therapeutics for neurological applications: concepts, progress
and challenges
Mahetab H. Amer1, Felicity R. A. J. Rose1, Kevin M. Shakesheff1, Michel Modo2,3 and Lisa J. White 1

Significant progress has been made during the past decade towards the clinical adoption of cell-based therapeutics. However,
existing cell-delivery approaches have shown limited success, with numerous studies showing fewer than 5% of injected cells
persisting at the site of injection within days of transplantation. Although consideration is being increasingly given to clinical trial
design, little emphasis has been given to tools and protocols used to administer cells. The different behaviours of various cell types,
dosing accuracy, precise delivery, and cell retention and viability post-injection are some of the obstacles facing clinical translation.
For efficient injectable cell transplantation, accurate characterisation of cellular health post-injection and the development of
standardised administration protocols are required. This review provides an overview of the challenges facing effective delivery of
cell therapies, examines key studies that have been carried out to investigate injectable cell delivery, and outlines opportunities for
translating these findings into more effective cell-therapy interventions.
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INTRODUCTION
Significant progress has been made during the past decade
towards the clinical adoption of cell-based therapeutics. Pre-
clinical studies have translated into clinical trials for conditions of
the central nervous system (CNS), including Parkinson’s disease
(PD),1 Huntington’s disease,2 amyotrophic lateral sclerosis (ALS)3

and stroke.4, 5 Clinical trials have focused on the delivery of
purified cellular suspensions, for example, in spinal cord injuries
and stroke.6–8 However, existing cell-delivery approaches have
shown limited success, with numerous studies showing fewer
than 5% of injected cells persisting at the site of injection within
days of transplantation.
One of the main translational challenges to the implementation

of injection-based cell therapy is the need to determine suitable
delivery protocols to ensure sufficient accuracy, improved cell
survival and reproducibility in administering cells for therapeutic
efficacy.9 In this review, we identify critical considerations for the
various stages of cell administration, outline studies that have
measured functional performance of injected cells and discuss
criteria for designing cell-delivery devices for minimally invasive
cell therapy. The various approaches used to attempt to maximise
cell viability and functionality in high accuracy cell-therapy
applications are also described. We suggest that if the variables
linked to optimal cell, survival can be recognised, cell loss may be
reduced and efficacy of cellular therapies can be improved.

CELLS AS THERAPEUTIC AGENTS: TRANSLATIONAL BARRIERS
IN NEUROLOGICAL APPLICATIONS
Three stages make up a typical cell-therapy procedure: (1) in vitro
preparation of cell suspensions; (2) injection procedure; and (3)

retention of the administered cells post-injection.10 Focusing on
one stage only can yield optimised settings that are not
favourable to the entire procedure, and therefore it is essential
that a systematic investigation considers all three stages to outline
optimal transplantation parameters (Fig. 1).
Cell loss has been reported to be observed post-transplanta-

tion,11, 12 with quantified survival rate of transplanted cells as low
as 1%.13 Moreover, a large number of cells that have been
originally retained die, possibly due to exposure of cells to the
inflammatory microenvironment, washout, immune destruction,
dispersion through impaired local vascular system,14, 15 apoptosis
and anoikic cell death.16 Variable clinical outcomes observed in
two trials for PD1, 17 have been partially ascribed to a failure to
properly distribute cells to the target site.18 Attaining efficient
delivery of an adequate number of cells without loss of
functionality is therefore a key step in the development of
regenerative medicine approaches.
The diverse behaviours of various cell types, choice of dosing

density, administration protocol and cell viability post-injection
are some of the obstacles facing clinical translation. This section
will explore the various variables involved in the three stages of
cell-therapy procedures.

Pre-delivery factors: scaling up pre-clinical models to human
therapy
To overcome low cell transplantation efficiency, one popular
approach to translational scale-up has been to deliver a large
number of cells to a single site19 with doses ranging up to
hundreds of millions of cells.19 This makes cell-therapy approaches
technically complex and expensive, as well as offering limited
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control over site-specificity, as cells will potentially migrate to
other sites.20

Determination of cell density. In cell transplantation studies, cell
concentration within suspensions is often reported, with suspen-
sions of over 100,000 cells/μL considered highly concentrated.21

As well as higher costs of cell processing, these suspensions can
be viscous and may cause needle clogging and uneven injection
flow. Moreover, as cell size varies widely, depending on the site or
species of origin, the maximum concentration suspended within a
certain volume will therefore vary. Hence, it is more accurate to
express the cellular component as a volume fraction, which is the
volume occupied by the cell fraction in a certain volume of
suspension vehicle, as described by Rossetti et al.10

High-density cell suspensions may lead to cell death, attribu-
table to limited oxygen and nutrient diffusion.22 The limited
capacity to generate appropriately large numbers of standardised
cells routinely, within a limited time frame, whereas adhering to
quality standards has also led to small clinical trials. In addition,
large doses of administered cells also pose higher safety risks of
tumorigenesis23 and micro-embolism.24 Moreover, higher injected
cell concentrations result in exposure to increased shear forces,25

yet may have a reduced tendency for sedimentation.10

No agreement exists regarding the optimal cell number to be
transplanted, although this is likely to vary depending on cell type,
disease and administration route. For example, 3–5 × 107 cells/kg
mesenchymal stem cells (MSCs) were administered per multiple
sclerosis patient,26 whereas in spinal cord injury, 5–6 × 106 cells/kg
have been transplanted intrathecally.27 Taguchi et al.28 reported
that the higher dose of 3.4 × 108 cells gave improved neurologic

outcomes than the lower dose of 2.5 × 108 cells administered
intravenously. A lower percentage loss of MSCs was exhibited with
increasing concentrations being administered, possibly due to the
finite number of cells being able to attach to the available inner
surface of the device.29 However, a phase II trial using 5–10 million
NT2N cells in stroke patients showed that patients receiving the
lower dose performed better.4 A recent study also demonstrated
that a suitable cell dose, rather than a higher one, can better aid
the repair of injured tissue in stroke patients.30

Cell suspension vehicle. Suspension vehicles have been found to
affect the viability of cells pre-delivery and their survival upon
implantation.10, 31, 32 Preparing a cell suspension that maintains a
homogeneous distribution and viability is essential to ensure
effective clinical translation. Results suggested that MSCs viability
is reduced to levels significantly below the permitted limit of 70%
in a short time when stored in parenteral solutions, with other
biological functions being slightly affected.31 Cells at different
temperatures will also have different requirements for storage
solutions.33

Injection volume. The human brain is 800–2300 times larger than
that of rodents used for pre-clinical research.34 To enable scale-up
to larger target volumes, cell distribution can be increased by
making multiple, lower volume injections for improved engraft-
ment.14 The adjustment of the needle/catheter for adequate cell
distribution can lead to multiple needle tracks and entry points.
Multiple transcortical brain penetrations have been used for a
range of clinical trials.1, 17, 35 This is a cause for concern, as each
penetration carries a risk of intracranial haemorrhage22 and
damage to white matter tracts.

Fig. 1 Common problems with injectable cell delivery and possible cell fates. Three stages make up a typical cell-therapy protocol: in vitro
preparation (pre-delivery), injection (delivery) and subsequent retention (post-delivery) of injected cells
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The shortage of human studies with lesion volume calculations,
such as occur in human spinal cord injuries,36 make it challenging
to decide on optimal injection volumes. A study by Gutierrez
et al.37 evaluated the spinal cord’s tolerance to varying numbers
and volumes of cell injections in Göttingen minipigs. Complete
functional recovery was achieved by 2 weeks, even when injection
volume and numbers were increased. However, histological
analysis revealed tissue damage when large volumes (50 µL) of
cell suspension were injected per site. Although increased
numbers of injections did not cause an increase in tissue damage
there was an optimal number of injections required to achieve the
best engraftment.
In many clinical trials, doses are extrapolated from data of pre-

clinical animal studies. Depending on how they are calculated,
doses of 100 million or more cells may result in substantial
volumes being required. Thus, it is vital that detailed dosing
studies are carried out in animal models to establish the minimum
effective and maximum tolerated doses.38

Cell-delivery challenges
Cell injector system design requirements and challenges. The main
delivery platform for cell-based therapeutics has traditionally been
a needle and syringe,39 with cell preparations delivered either
systemically or directly.40 Although many clinical trials have used
syringe/needle systems without cannulas,41–44 CNS cell transplan-
tation trials have typically utilised a frame-based platform for the
insertion of a stereotactically guided straight cell-delivery cannula
or needle.1, 2, 17, 22, 35, 44–46 There is a growing recognition that
conventional needle-based and catheter-based cell transplanta-
tion tools have considerable inadequacies that may affect clinical
translation.47, 48 Insufficient pre-clinical testing of surgical tools
and methods for cell delivery to the human brain and spinal cord

may result in the failure of cell transplantation trials, despite the
reliability of the basic biological concepts.49–51 Key considerations
for clinical translation of cell-delivery devices include ease of
loading and use, reproducibility of delivery, possibility of
sterilisation, freedom from leachable and/or extractable contami-
nants, and ensuring no visual obstruction through a surgical
microscope in high accuracy applications.
Role of mechanical forces The mechanical forces that cells

experience as they pass through the injection device is a factor
influencing their subsequent viability and functionality post-
transplantation. To comprehend the fluid dynamics in action, we
must explore the mechanical forces exerted on the cells.
While flowing through a needle, cells may experience several

types of mechanical forces, comprising shear forces characteristic
of linear shear flow, a pressure drop across the cell and
extensional (stretching) forces.52 The nature of flow, whether
laminar or turbulent, should be confirmed at the ejection rate and
syringe/needle size used for the transplantation procedure. This
can be verified through the calculation of Reynold’s number (Re),
which determines flow conditions (transitional level to turbulence
is Re = 2100):

Re ¼ ρQ
15πDη

;

where ρ is the carrier fluid density (water at room tempera-
ture=999.97 kg/m3), Q is volumetric flow rate (mL/min), D is needle
diameter and η is dynamic viscosity of the medium. Given that the
flow is laminar, the velocity profile is parabolic across the diameter
(Fig. 2a), with maximum velocity at the centre of the lumen. Cells
and fluid in the middle of a cannula flow at a different velocity to
those at the walls. This difference in velocity exposes cells to shear
stress.25 Changes in shear rate and shear stress have been
suggested to affect cell viability and function.52 Shear stress (τ) is

Fig. 2 Schematic of a section of a syringe/needle lumen of radius R. a Shear stress and velocity distribution in delivery device for Newtonian
fluid and laminar flow. The velocity profile across the diameter is parabolic. Shear stress (τ) is zero at the centre and increases linearly to its
maximum value at the wall. As a cell flows from the syringe to the needle, it will experience increasing velocities along its length, causing it to
stretch. b Plug flow behaviour—flow velocities are almost equal across the whole diameter. Shear-thinning materials display this behaviour
when their flow in a capillary reaches a steady state
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calculated by Poiseuille’s equation,

τ ¼ 4Qη
πR3

;

where τmax is shear stress (dyn/cm2); Q is flow rate (cm3/s); η is
dynamic viscosity of the medium; and R denotes needle radius.
The magnitude of shear stress is maximal at the walls of the
syringe/needle, zero at the centre and changes linearly with
distance between those two. Even low levels of shear stress (10
dynes/cm2) have been stated to have a major influence on the
activation of molecular cascades.53, 54 Any change in the system’s
geometry, such as the sudden tapering of a syringe to the needle,
can also result in cells experiencing extensional flow, an increase
in velocity and, consequently, high shear.55 The range of shear
stress values generated by clinicians may exceed physiological
values. As a useful reference, average wall shear stress is 1–6 dyn/
cm2 for venous circulation and 15 dyn/cm2 for arterial circula-
tion.56, 57 However, previous reports have also stated that low
shear forces of 3.5 58 and 15 dyn/cm2 59 can influence cells.
Previous work has concluded that cell damage is based on the
extent of shear stress as well as exposure time to zones of shear.25, 60

Damage may also occur due to collisions with the stationary
surfaces of the device.61 Complete damage of the cell may not
necessarily be the only adverse result. Investigations carried out
on erythrocytes have shown that excessive stretching or
deformation of the cell membrane might result in loss of
function.62 Extensional flow also causes cells to experience
stretching and deformation, leading to cell death.63, 64 A larger
difference between diameters of the syringe and needle will result
in larger extensional forces, whereas a longer needle will increase
the time a cell is exposed to extensional forces. In addition, cell
aggregation may intensify shear stress experienced by cells during
delivery. Forces acting on cells during their administration may
have two effects: cell destruction along with stretch pre-
conditioning.65

Biomaterial-assisted cell delivery (reviewed in detail in ‘Bioma-
terial-assisted delivery’ section) has the potential to mediate the
impact of mechanical forces during cell delivery. Shear-thinning
hydrogels are injectable materials that exhibit a viscosity decrease
under shear strain; the viscosity returns to normal when the shear
is removed. Shear-thinning materials typically display plug flow
behaviour when their flow within a capillary reaches a steady
state. They exhibit a central wide region, where material and cells
experience little or no shear rate and a narrow zone of shear
adjacent to the walls (Fig. 2b).
Needle characteristics Critical parameters in injectable cell

delivery include needle characteristics and/or diameter of the
tubing used.50 Needle characteristics include inner and outer
diameters, length, stiffness and bevel design. Deep subcortical
target structures, such as the caudate nucleus or corpus striatum,
require a long, thin needle/cannula of sufficient rigidity to
penetrate to the target site without injuring the overlying
structure. This cannula can be 19 cm or more. Shorter needles
(8–10 cm) would require direct brain exposure, which is more
invasive.50

Various needle gauge sizes have been used for neurological
applications, typically starting from 25 G.45, 66 Devices with needle
sizes of 30 G have been developed for CNS applications,51, 67 and
30–34 G are typically used for applications requiring high
accuracy.68, 69 However, smaller bore size needles, e.g.: 27–34 G,
are more prone to obstruction by concentrated cell suspensions,
especially when successive injections are required. Smaller gauge
needles cause less tissue trauma, minimise leakage through the
track created by needle insertion, and have been suggested to
reduce gliosis.70 Mehta et al.71 reported a 53% headache rate with
the use of a 22 G needle in neurological patients, and suggested
that this high incidence could be caused by the large-bore spinal
needle, which was used to prevent mechanical damage to the

infused cells. Karussis et al.72 also reported a high incidence of
headache with MSCs in multiple sclerosis and ALS patients,
attributing this to the lumbar puncture itself; needle size was not
reported. Care should be taken to choose the correct needle size
that accounts for cell type, injection speed, site of transplantation
and the viscosity of the suspension. Veraitch et al.73 reported that
45 passages through a bore of 500 µm diameter were needed
before a significant reduction in viability was detected. Longer,
finer needles have resulted in the delivery of a smaller volume50

and a lower percentage of the cell dose administered.60 However,
loss of cell viability resulting from the use of smaller needle
gauges was not substantial.25, 60, 74 Faster acceleration of fluid and
cells within longer needles may be more prone to clogging,
perhaps because there is less time for cells to dislodge from
transient adhesions to other cells and the injector.50 Bevel angle
and length may also influence injectate dispersion and direction.
Material employed for construction of delivery device Recent

studies have shown that cells may be retained in the delivery
device,60, 75 with this effect being more pronounced in glass
cannulas than in metal.75 Whether the adherence of the cells to
the walls of the syringe/cannula is due to chemical, physical or
charge effects has not been studied, but all of these might
possibly be manipulated to decrease adhesion and settling.75 In
addition, coating the inner surface of the needle/catheter with
proteins may reduce cell adhesion to the device.76 In addition to
possible adherence to device materials, cells may encounter
residual trace amounts of manufacturing agents that could induce
apoptosis or undesired differentiation. The use of hydrophilic and
siliconised coatings on internal walls of the cannula has also been
suggested to decrease friction between the needle and tissue
in vivo.75 Although glass cannulas present several advantages,
including higher precision and minimal penetration injuries,21

glass may not be sufficiently rigid to endure injection pressure.
Novel materials such as electroactive polymers and magnetor-
heological elastomers77 show promise for the development of
tailored needles whose rigidity could be adjusted by current,
magnetic field or temperature.
Sedimentation Uniformity of cell dosing may be affected by

aggregation or sedimentation of cells in suspension over time,
with clumping of cells being found to affect cell viability.78 The
possibility of cell sedimentation during the course of the surgical
procedure, especially in large diameter needles/cannula,75 and the
potential for inconsistent cell dosing needs to be considered in
designing cell-therapy protocols, particularly given that orienta-
tion will vary depending on application. In vertical cannulas, cells
sediment towards the tip of the needle, with most cells appearing
in the first 10–20% of the injectate. In horizontal cannulas, settling
and adherence of cells on the side caused most of the cell dose to
emerge in the final 10–20% of injectate75; similar effects of cell
dose retention have been reported.74 A suspension medium
should preferably have a density of ~2 g/cm3 and a viscosity >3 cP
to reduce cell settling at 20–40% cell volume fraction.10 Negative
impacts of cell sedimentation observed post cell therapy include
graft-induced dyskinesias in PD trials which may have occurred
due to formation of dopamine ‘hot spots’ in the brain, resulting in
abnormal activation of neural circuits.79 Moreover, some cells,
such as neural progenitor cells (NPCs), have a natural tendency to
form clusters that may settle at the tip of the needle.50 Therefore,
it is essential to maintain an even cell suspension using agitation
or other approaches.
Administration protocols. As cell injections for neurological

injuries move on to extensive clinical testing, procedural
standardisation is necessary to reduce the probability of technical
failures and measure the effects of interventions on patient
outcome and other endpoints (e.g. injection-associated trauma,
graft survival). Clinical trial design to enhance the final number of
cells that integrate within the diseased tissue will require re-
examining the current lack of optimisation of transplantation
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protocols. For a given clinical trial, optimum factors for cell
implantation are normally estimated from pre-clinical research or
the investigator’s judgement.80 Administration protocols will vary
depending on cell type, disease and administration route. While
inappropriately administered cells may in most cases result in no
functional impact, in some cases, transplanted cells may result in
undesirable side effects.
Injection rate Injection rates employed in clinical trials for cell

injection are inconsistent. For neural cell transplantation, for
instance, studies have used a rate of 5 µL/min,81 compared to 300
µL/min for spinal injury,82 and between 10 and 1000 µL/min for
stroke.7, 83, 84 Rate of injection has been shown to be potentially
vital in cellular delivery.50, 60, 74

Although small volume injections may be made over extended
periods in the laboratory, clinical injections must be made within
limited surgical duration. It has been suggested that delivering the
required volume over a longer time will potentially reduce
mechanical forces acting on the cells and the creation of
damaging pressure gradients21; delivery of 44 nL in 5 min was
linked to good tissue preservation.85 However, such a rate would
be impractical, with 1 μL requiring over an hour to deliver.
Notably, brain microinjections in rats at a rate >1 μL/min have
been linked to tissue damage.86 Recently, intracarotid transplanta-
tion of glial-restricted precursors (GRPs) and MSCs through a
microcatheter at an infusion rate of ≥1mL/min resulted in stroke
in 27/44 rats, even with a vehicle-only infusion. A lower rate (0.2
mL/min) was safe for the infusion of both vehicle and GRPs.87

Moreover, at high flow rates, backflow along the catheter shaft
may occur if the applied force is removed from the plunger and
affect delivery. It was determined that backflow can be avoided in
grey matter with a 32 G catheter at rates <0.5 µL/min in a rat
model.88 However, injection at a slow rate may lead to a lower
percentage of the cell dose being delivered, higher apoptosis
levels and influence the immunophenotype of delivered cells.60, 74

Cells employed Optimal injection parameters will vary depend-
ing on the morphological, physiological and growth characteristics
of each cell type. Thus, it is not surprising that preparation and
ejection protocols optimised for one type of cells are not
necessarily applicable to others.32, 60, 74 When studying injection
rates, smaller NIH-3T3 cells had an optimum ejection rate of 150
µL/min, whereby the maximum percentage of viable cell dose was
delivered,60 whereas the relatively larger BMSCs had an optimal
ejection rate of 300 µL/min.74 Some cell types, such as MSCs, may
be especially disposed to clumping, leading to blockage of flow
within the needle,49 whereas other cell types, e.g. NSCs, are
sensitive to manipulation and undergo apoptosis easily. During
handling, MSCs were observed to have a greater inclination than
NPCs to come out of suspension and form tight clusters.49

Tissue compliance If injections are made into cavities, larger
volumes can be introduced without generating large pressure
gradients if fluid drainage from the cavity is adequate, i.e. match
injection to lesion volumes.89, 90 Hydrodynamic injury will occur if
intraparenchymal pressure surpasses the tensile limits of the
parenchyma. Given that many microsyringes are manufactured to
tolerate 1000 psi or more before failure, the likelihood of
producing large tissue pressures during injection exists. Larger
injection volumes also worsen the reflux of infused materials
along the penetration tract,91 making cell dosing unpredictable in
terms of numbers and final location, and contributing to injection-
related injury.21 The low elastic modulus of brain tissue also
provides little resistance to reflux of infusions.34

Post-delivery complications: functional performance of injected
cells
Given the number of clinical trials that use needle-based systems
or catheter-based systems for cell delivery, surprisingly few studies
have focused on the impact of small-bore needle injection on cell

function. Transplantation studies have focused on the outcome of
the trial rather than the variables that affected results. Investigat-
ing viability and potency of transplanted cells at the time of
delivery is crucial, as a small level of cell death within a
concentrated cell population could have a significant effect on
the remaining viable portion through the release of cytotoxic
agents.92 To date, research has been carried out to evaluate the
impact of injection on cell functionality.25, 29, 50, 52, 93–96 Studies
have highlighted parameters needed to achieve an adequate cell
density for therapy, such as the period between cell preparation
and implantation,97 injection rate, needle length and bore size50

and cell concentration.70, 98

There has been wide variability in how the effects of delivery
devices on cell performance are assessed. Therefore, it is vital to
develop standardised assays to consistently characterise cellular
therapy products. Discrepancies in the employed delivery devices
and administration methodologies has complicated comparisons
and led to contradictory results. This is illustrated in Table 1, with
some studies demonstrating that cell manipulation through a
needle did not significantly affect viability,25, 93, 95 whereas other
studies show that it did exert a significant effect.94 In one study,
ejection of NIH-3T3 cells at 150 µL/min exhibited the optimal
percentage of dose delivered,60 whereas another study on
hMSCs74 showed an optimal recovery at the highest flow rate
under investigation (300 µL/min). A study by Heng et al.29 showed
reduced cell recovery at the higher flow rate (1600 µL/min), with
large variation in their samples.
Another potential concern is the inadequate testing of many

aspects of cellular health in most studies, thereby not providing
the complete picture needed to develop appropriate clinical
administration protocols. Table 1 provides a summary of the
investigations carried out into the effects of injection-based
administration of cells on various parameters of cell health.
Conventional tests, such as propidium iodide, can reveal which
cells are dead, but are not useful predictors of potential delayed
damage to the cells. The transient exposure to shear forces when
injected does not make membrane integrity measurements, such
as trypan blue exclusion assay, a good method of uncovering
delayed apoptotic and senescent responses triggered. This is
evident in some studies that have only relied on the analysis of
cell viability to conclude that cells were not affected by the
injection parameters under investigation, as shown in Table 1.50, 95, 96

In addition, some studies have utilised a relatively small sample
size of n≤ 3 for their investigations.25, 29, 94 Moreover, different
studies had different definitions of what constitutes effective cell
transplantation. Although the Centre for Biologics Evaluation and
Research (CBER) states that cellular therapy products should
display ≥70% viability,99 a study by Kondziolka et al.,45 considered
a reduction of almost 50% in viability of cells post-injection
acceptable.
The aforementioned issues illustrate that an enhanced under-

standing of what happens to cellular therapeutics post-injection,
specifically regarding vital cellular health parameters, will facilitate
the development of more efficient administration and formulation
approaches. This reinforces the need for defining crucial
parameters and trial-specific pre-clinical good laboratory practice
validation of any injection protocol before human application.
One method to enhance cell functionality testing in pre-clinical
and clinical studies is to assess the viability of a small aliquot of
injected cells. Further investigations into proliferative capacity,
phenotypic expressions, apoptotic responses and other
transcription-level changes of the various cell types under clinical
investigation is critical. Without this, the uncertainty of whether
delivery was effective will undermine interpretations of efficacy.
Most investigations carried out on the impact of injection on

cell functionality and viability are completely in vitro, and
although these data are important, other issues can undermine
cell viability in vivo. For example, reflux and rejection can
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eliminate grafts in animals. In vitro experiments presented in this
review will need to be augmented with in vivo data. We cannot
exclude the possibility that cells may experience significant
biological changes on catheter/syringe/needle passage outside
the conditions examined in studies cited in this review. Optimisa-
tion of injection protocols, materials from which delivery devices
are constructed, injection rates and cell dose is therefore crucial to
achieve higher efficacy and reduce variability using the smallest
possible cell dose.

APPROACHES TO IMPROVE INJECTABILITY OF CELLS
Improvement of neurological cell transplantation protocols and
tools
To decrease variations encountered in manual injection, auto-
mated devices (e.g. computer-controlled syringe pumps) have
been suggested to offer better control.49, 100 Automated brain
injections were more reproducible compared to manual injections,
with variability 2–20-fold higher in manual techniques.49 For cell
aggregates or encapsulated cells, automated cell-delivery meth-
ods may prove useful to control the cell dose and preserve
structure integrity. However, manual delivery is still often
preferred to automated robot-assisted tools due to the lack of
haptic feedback to the surgeon in the latter method.101

To overcome the need for multiple injections, Mendez et al.48

developed a two-hole cannula tip design, whereas Lim and
colleagues created a system capable of radially branched
deployment (RBD) of a catheter at adjustable angles.22, 34 Notably,
cells at high density (6 × 107 cells/mL) were not damaged by
transit at a high rate of delivery (50 µL/min, 99.6% viability).34

Although it represents an improvement, RBD still does not fully
repeat the cell distribution achieved in pre-clinical models.
The use of syringe/cannula rotation during the injection

procedure is a strategy described in the literature.45, 75, 102 In a
clinical trial for Parkinson’s disease, the injection protocol
incorporated rotations of the cannula between deposits, with
transplant survival confirmed up to 12 months after surgery.48

Skewed distribution of cells in horizontally oriented cannulas can
also be amended by rotation at regular intervals during the
procedure.75 Robot-assisted surgery, image-based needle gui-
dance systems can also facilitate accurate delivery. These include
needles that automatically stop and lock into position by sensing
drops in mechanical resistance.103 Technological improvements to
platform and cannula design have reduced procedural invasive-
ness while improving injection accuracy, resulting in progress
from single unilateral microinjections to multiple bilateral injec-
tions without long-term neurological consequences.51

Few clinical trials thoroughly optimise and state their cell
transplantation protocols, and do not specify infusion volumes,
rates or duration of administration, which may lead to variability
and lower transplantation efficiency (Table 2). However, recent
studies are beginning to recognise the importance of optimisation
of transplantation protocols, both in pre-clinical and clinical
trials.87, 98, 104–107 In a model of retinal dysfunction, photoreceptor
integration was 20-fold to 30-fold increased by improved
transplantation procedures including single and dual injections,
and optimisation of the number of cells injected per µL.108

Another study defined optimised conditions for an autologous
stem cell therapy to treat a craniofacial traumatic deficiency,
regenerating 80% of the original jawbone deficiency in only
4 months vs. a minimum healing period of 6–8 months with
typical protocols.104

Biomaterial-assisted delivery
Although many transplantation studies have employed a saline-
based delivery vehicle, alternative cell carriers have included
injectable hydrogels. Hydrogels are hydrated, polymeric networksTa
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with great potential as cell carriers.109, 110 Alternatives to saline
vehicles have included cells embedded within hydrogels or
microencapsulated within polymers, attached to the surfaces of
microcarriers, or injected as multicellular aggregates.111 Injectable
biomaterial scaffolds as cell carriers have demonstrated increased
spatial and temporal administration compared to saline injec-
tions.112, 113 In addition, the use of biomaterials provides an
opportunity to deliver growth factors alongside cells.
Hydrogels such as alginate may experience ‘shear banding’

along inner walls of the needle,52 whereby a layer of hydrogel
shear-thins to form a fluid, acting as a lubricant, allowing the rest
of the intact hydrogel to slip through the needle. The width of the
plug flow region is dependent upon rigidity of the hydrogel and
flow rate,114 therefore altering the hydrogel’s formulation may
impact plug flow. This mechanical protection is independent of
cell properties52 and is therefore applicable to different cell types.
Aguado et al.52 tested 1% alginate with three different molecular
weights, and demonstrated protective effects with optimised
mechanical properties; human umbilical vein endothelial cells had
significantly lower cell viability in phosphate-buffered saline or in
non-crosslinked alginate compared to in crosslinked alginates.
Considerable research on hydrogel cell carriers has focused on

their role post-delivery, including cell localisation,110 support of
tissue growth115, 116 and protection from local inflammatory
conditions.117 More focus is required on their role during the
injection procedure, as opposed to post-delivery, where the
presence of an optimised viscoelastic material may protect cells
from damaging mechanical forces.52, 60 This has been only
investigated on a small scale (Table 3), and needs to be explored
further.

CONCLUDING REMARKS AND FUTURE OUTLOOK
The complexity of the cell injection process has resulted in a
paucity of studies where combinations of process parameters
have been evaluated. Nonetheless, these few studies demonstrate
that interactions between cell preparation protocols and injection
procedures are significant, and may substantially alter cell
delivery. Studies also suggest that standardisation of injection
parameters will be a critical aspect of designing and comparing
clinical studies. In addition, factors such as choice of instrument,
interval between filling of the cannula/needle and fixing to the
stereotaxic frame prior to injection, and angles of delivery must be
considered and empirically validated before use in clinical
practice.
An integrated approach to the evaluation of cell-delivery

success is needed to improve the assessment of delivery efficacy
and to allow for sound interpretations of clinical results. Improved
cell-delivery tools are also required to streamline the delivery of
cell-based therapeutics from the donor to the patient without
compromising quality. Finally, pre-clinical planning and testing of
the desired administration protocol with cell-type specificity is
essential to achieve good clinical trial design.
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