9 research outputs found

    Loci associated with bone strength in laying hens

    Get PDF
    One of the growing welfare concern in the layer industry is the high incidences of bone fracture. This is thought to result from reduction in bone strength due to osteoporosis which is exacerbated by environmental stresses and mineral deficiencies. Despite these factors however, the primary cause of bone weakness and the resulting fractures is believed to be genetic predisposition. In this study, we performed a genome-wide association study to identify with high reliability the loci associated with bone strength in laying hens. Genotype information and phenotype data were obtained from 752 laying hens belonging to the same pure line population. These hens were genotyped for 580,961 single nucleotide polymorphisms (SNPs) with each of the SNPs associated with tibial breaking strength using the family-based score test for association (FASTA). A total of 52 SNPs across chromosomes 1, 3, 8 and 16 were significantly associated with tibial strength with the genome-wide significance threshold set as a corrected p.value of 10e-5. Based on the local linkage disequilibrium around the significant SNPs, 5 distinct and novel QTLs were identified on chromosomes 1 (2 QTLs), 3 (1 QTL), 8 (1QTL) and 16 (1 QTL). The strongest association was detected within the QTL region on chromosome 8 with the most significant SNP having a corrected p.value of 4e-7. A number of candidate genes were identified within the QTL regions, including the BRD2 gene which is required for normal bone physiology. Bone-related pathways involving some of the genes were also identified including the hedgehog signalling and Wnt signalling pathways. Our result supports previous studies, which suggested that bone strength is highly regulated by genetics. It is therefore possible to alleviate bone fracture in laying hens through genetic selection, and ultimately improve hen welfare

    Genomic prediction across populations, using pre-selected markers and differential weight models

    Get PDF
    Genomic prediction (GP) in numerically small breeds is limited due to the requirement for a large reference set. Across breed prediction has not been very successful either. Our objective was to test alternative models for across breed and multi-breed GP in a small Jersey population, utilizing prior information on marker causality. We used data on 596 Jersey bulls from new Zealand and 5503 Holstein bulls from the Netherlands, all of which had deregressed proofs for stature. Two sets of genotype data were used, one containing 357 potential causal markers identified from a multi-breed meta-GWAS on stature (top markers), while the other contained 48,912 markers on the custom 50k chip, excluding the top markers. We used models in which only one GRM (either top markers, 50k, or top plus 50k markers combined) was fitted, and models in which two GRMs (both the top and 50k) were fitted simultaneously, however with different variance components to weight the GRMs differently. Moreover, we estimated the genetic correlation(s) between the breeds (for each GRM) using a multi-trait GP model, which implicitly weights the contribution of one breed’s information to another. Across breed, we observed low accuracies of GP when the 50k markers were fitted alone (0.06) or when the top markers were added to 50k (0.15). Higher accuracy was obtained when only the top markers were fitted (0.21), whereas the highest accuracy was obtained when fitting 50k and top markers simultaneously as two independent GRMs (0.25). Multi-breed prediction outperformed both within and across breed prediction with accuracies ranging from 0.34 to 0.45, with the same trend as in across breed prediction. Based on our results, the best approach for across and multi-breed GP is to fit models that are able to isolate and differentially weight the most important markers for the trait. Keywords: Across breed genomic prediction, marker pre-selection, multi-trait model, sequence data

    Utility of whole-genome sequence data for across-breed genomic prediction

    Get PDF
    Background: Genomic prediction (GP) across breeds has so far resulted in low accuracies of the predicted genomic breeding values. Our objective was to evaluate whether using whole-genome sequence (WGS) instead of low-density markers can improve GP across breeds, especially when markers are pre-selected from a genome-wide association study (GWAS), and to test our hypothesis that many non-causal markers in WGS data have a diluting effect on accuracy of across-breed prediction. Methods: Estimated breeding values for stature and bovine high-density (HD) genotypes were available for 595 Jersey bulls from New Zealand, 957 Holstein bulls from New Zealand and 5553 Holstein bulls from the Netherlands. BovineHD genotypes for all bulls were imputed to WGS using Beagle4 and Minimac2. Genomic prediction across the three populations was performed with ASReml4, with each population used as single reference and as single validation sets. In addition to the 50k, HD and WGS, markers that were significantly associated with stature in a large meta-GWAS analysis were selected and used for prediction, resulting in 10 prediction scenarios. Furthermore, we estimated the proportion of genetic variance captured by markers in each scenario. Results: Across breeds, 50k, HD and WGS markers resulted in very low accuracies of prediction ranging from − 0.04 to 0.13. Accuracies were higher in scenarios with pre-selected markers from a meta-GWAS. For example, using only the 133 most significant markers in 133 QTL regions from the meta-GWAS yielded accuracies ranging from 0.08 to 0.23, while 23,125 markers with a − log10(p) higher than 7 resulted in accuracies of up 0.35. Using WGS data did not significantly improve the proportion of genetic variance captured across breeds compared to scenarios with few but pre-selected markers. Conclusions: Our results demonstrated that the accuracy of across-breed GP can be improved by using markers that are pre-selected from WGS based on their potential causal effect. We also showed that simply increasing the number of markers up to the WGS level does not increase the accuracy of across-breed prediction, even when markers that are expected to have a causal effect are included

    Use of whole-genome sequence data for genomic prediction across populations and species

    No full text
    The availability of whole genome sequence data presents an opportunity to improve the accuracy of genomic prediction (GP), given the expectation that the data contains the causal variants that underlie any given complex trait. This thesis investigated the benefit of using whole genome sequence data for GP across populations and species. Results show that the accuracy of GP across populations does not improve by simply increasing marker density up to whole genome sequence level (Chapter 2). However, accuracy can be improved if GP across populations is based on a few variants that are pre-selected from whole genome sequence based on the significance level of their effect on the trait from a genome-wide association study (GWAS). The result highlights the relevance of GWAS for GP. In Chapter 3, it was demonstrated that the accuracy of prediction can further be improved using a multi-population GP model in which important pre-selected variants are used to create a genomic relationship matrix (GRM), other available and unselected variants are used to create a second GRM, and both GRMs are fitted simultaneously. While the pre-selected variants in the first GRM are isolated from the noise effect of neutral variants, and as such their effects are more accurately estimated, the variants in the second GRM captures genetic variance for the trait that cannot be captured by the pre-selected variants in the first GRM. In terms of accuracy, it was shown that the multi-population, multiple GRMs (MPMG) GP model outperforms within-population and multi-population GP models in which either the pre-selected or all available variants are equally weighted in a single GRM. In Chapter 4, the predictive performance of the MPMG model was theoretically underpinned by deriving and validating a deterministic prediction equation for its accuracy. Using the derived prediction equation, it was found that the predictive performance of the model is due to its ability to benefit from the low number of effective chromosomal segments ( ) represented by the few pre-selected variants in the first GRM. However, the low values for  due to  the pre-selected variants is an advantage for the MPMG model only if variant pre-selection is accurate, such that the pre-selected variants explain some genetic variance for the trait of interest. In addition to its use as a tool to gain theoretical insights into the performance of biology-informed GP models, the derived prediction equation can be used to, a priori, estimate expected accuracy if the MPMG model were to be implemented for GP. In Chapter 5, the usefulness of summary-level GWAS result for human height as prior information for identifying genes and gene-associated variants that affect stature in cattle, was investigated. Results show that in some cases, for example in the absence of stature GWAS, human height GWAS results can be useful in identifying cattle stature genes and associated variants

    Genomic prediction across populations, using pre-selected markers and differential weight models

    No full text
    Genomic prediction (GP) in numerically small breeds is limited due to the requirement for a large reference set. Across breed prediction has not been very successful either. Our objective was to test alternative models for across breed and multi-breed GP in a small Jersey population, utilizing prior information on marker causality. We used data on 596 Jersey bulls from new Zealand and 5503 Holstein bulls from the Netherlands, all of which had deregressed proofs for stature. Two sets of genotype data were used, one containing 357 potential causal markers identified from a multi-breed meta-GWAS on stature (top markers), while the other contained 48,912 markers on the custom 50k chip, excluding the top markers. We used models in which only one GRM (either top markers, 50k, or top plus 50k markers combined) was fitted, and models in which two GRMs (both the top and 50k) were fitted simultaneously, however with different variance components to weight the GRMs differently. Moreover, we estimated the genetic correlation(s) between the breeds (for each GRM) using a multi-trait GP model, which implicitly weights the contribution of one breed’s information to another. Across breed, we observed low accuracies of GP when the 50k markers were fitted alone (0.06) or when the top markers were added to 50k (0.15). Higher accuracy was obtained when only the top markers were fitted (0.21), whereas the highest accuracy was obtained when fitting 50k and top markers simultaneously as two independent GRMs (0.25). Multi-breed prediction outperformed both within and across breed prediction with accuracies ranging from 0.34 to 0.45, with the same trend as in across breed prediction. Based on our results, the best approach for across and multi-breed GP is to fit models that are able to isolate and differentially weight the most important markers for the trait. Keywords: Across breed genomic prediction, marker pre-selection, multi-trait model, sequence data

    A deterministic equation to predict the accuracy of multi-population genomic prediction with multiple genomic relationship matrices

    No full text
    BACKGROUND: A multi-population genomic prediction (GP) model in which important pre-selected single nucleotide polymorphisms (SNPs) are differentially weighted (MPMG) has been shown to result in better prediction accuracy than a multi-population, single genomic relationship matrix ([Formula: see text]) GP model (MPSG) in which all SNPs are weighted equally. Our objective was to underpin theoretically the advantages and limits of the MPMG model over the MPSG model, by deriving and validating a deterministic prediction equation for its accuracy. METHODS: Using selection index theory, we derived an equation to predict the accuracy of estimated total genomic values of selection candidates from population [Formula: see text] ([Formula: see text]), when individuals from two populations, [Formula: see text] and [Formula: see text], are combined in the training population and two [Formula: see text], made respectively from pre-selected and remaining SNPs, are fitted simultaneously in MPMG. We used simulations to validate the prediction equation in scenarios that differed in the level of genetic correlation between populations, heritability, and proportion of genetic variance explained by the pre-selected SNPs. Empirical accuracy of the MPMG model in each scenario was calculated and compared to the predicted accuracy from the equation. RESULTS: In general, the derived prediction equation resulted in accurate predictions of [Formula: see text] for the scenarios evaluated. Using the prediction equation, we showed that an important advantage of the MPMG model over the MPSG model is its ability to benefit from the small number of independent chromosome segments ([Formula: see text]) due to the pre-selected SNPs, both within and across populations, whereas for the MPSG model, there is only a single value for [Formula: see text], calculated based on all SNPs, which is very large. However, this advantage is dependent on the pre-selected SNPs that explain some proportion of the total genetic variance for the trait. CONCLUSIONS: We developed an equation that gives insight into why, and under which conditions the MPMG outperforms the MPSG model for GP. The equation can be used as a deterministic tool to assess the potential benefit of combining information from different populations, e.g., different breeds or lines for GP in livestock or plants, or different groups of people based on their ethnic background for prediction of disease risk scores.</p

    Genomic prediction for numerically small breeds, using models with pre-selected and differentially weighted markers

    Get PDF
    Background: Genomic prediction (GP) accuracy in numerically small breeds is limited by the small size of the reference population. Our objective was to test a multi-breed multiple genomic relationship matrices (GRM) GP model (MBMG) that weighs pre-selected markers separately, uses the remaining markers to explain the remaining genetic variance that can be explained by markers, and weighs information of breeds in the reference population by their genetic correlation with the validation breed. Methods: Genotype and phenotype data were used on 595 Jersey bulls from New Zealand and 5503 Holstein bulls from the Netherlands, all with deregressed proofs for stature. Different sets of markers were used, containing either pre-selected markers from a meta-genome-wide association analysis on stature, remaining markers or both. We implemented a multi-breed bivariate GREML model in which we fitted either a single multi-breed GRM (MBSG), or two distinct multi-breed GRM (MBMG), one made with pre-selected markers and the other with remaining markers. Accuracies of predicting stature for Jersey individuals using the multi-breed models (Holstein and Jersey combined reference population) was compared to those obtained using either the Jersey (within-breed) or Holstein (across-breed) reference population. All the models were subsequently fitted in the analysis of simulated phenotypes, with a simulated genetic correlation between breeds of 1, 0.5, and 0.25. Results: The MBMG model always gave better prediction accuracies for stature compared to MBSG, within-, and across-breed GP models. For example, with MBSG, accuracies obtained by fitting 48,912 unselected markers (0.43), 357 pre-selected markers (0.38) or a combination of both (0.43), were lower than accuracies obtained by fitting pre-selected and unselected markers in separate GRM in MBMG (0.49). This improvement was further confirmed by results from a simulation study, with MBMG performing on average 23% better than MBSG with all markers fitted. Conclusions: With the MBMG model, it is possible to use information from numerically large breeds to improve prediction accuracy of numerically small breeds. The superiority of MBMG is mainly due to its ability to use information on pre-selected markers, explain the remaining genetic variance and weigh information from a different breed by the genetic correlation between breeds.</p

    Using prior information from humans to prioritize genes and gene-associated variants for complex traits in livestock

    No full text
    Genome-Wide Association Studies (GWAS) in large human cohorts have identified thousands of loci associated with complex traits and diseases. For identifying the genes and gene-associated variants that underlie complex traits in livestock, especially where sample sizes are limiting, it may help to integrate the results of GWAS for equivalent traits in humans as prior information. In this study, we sought to investigate the usefulness of results from a GWAS on human height as prior information for identifying the genes and gene-associated variants that affect stature in cattle, using GWAS summary data on samples sizes of 700,000 and 58,265 for humans and cattle, respectively. Using Fisher's exact test, we observed a significant proportion of cattle stature-associated genes (30/77) that are also associated with human height (odds ratio = 5.1, p = 3.1e-10). Result of randomized sampling tests showed that cattle orthologs of human height-associated genes, hereafter referred to as candidate genes (C-genes), were more enriched for cattle stature GWAS signals than random samples of genes in the cattle genome (p = 0.01). Randomly sampled SNPs within the C-genes also tend to explain more genetic variance for cattle stature (up to 13.2%) than randomly sampled SNPs within random cattle genes (p = 0.09). The most significant SNPs from a cattle GWAS for stature within the C-genes did not explain more genetic variance for cattle stature than the most significant SNPs within random cattle genes (p = 0.87). Altogether, our findings support previous studies that suggest a similarity in the genetic regulation of height across mammalian species. However, with the availability of a powerful GWAS for stature that combined data from 8 cattle breeds, prior information from human-height GWAS does not seem to provide any additional benefit with respect to the identification of genes and gene-associated variants that affect stature in cattle
    corecore