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Introduction

The utilization of genomic prediction (GP) in numerically small populations is limited
due to the lack of a large reference sets (Goddard 2009; VanRaden, 2008). Potentially,
information can be utilised across populations. In practice however, it has been shown that the
use of information across populations results in little to no benefit (Calus et al., 2014; Erbe et
al., 2012; Hayes et al., 2009; Kachman et al., 2013) or even negative prediction accuracies
(Calus et al., 2014; Hayes et al., 2009). Some studies suggest that with increasing marker
density, linkage disequilibrium (LD) between quantitative trait nucleotides (QTNs) and
markers will increase, and GP across populations will consequently improve (De Roos et al.,
2008; Kizilkaya et al., 2010). Others suggested that focussing on the QTNs themselves might
improve GP (Boichard et al., 2012; Hoze et al., 2014).

Our hypothesis is that GP across populations can be improved when: 1) the effects of
known QTNs are separated from those of other markers and are properly weighted 2) a multi-
trait modelling approach is used, in which the genetic correlation between populations serves
as a measure of how much one population’s information can contribute to the accuracy of
selection in another population. Therefore, the objective of this study was to test alternative
models for across and multi-breed GP that appropriately utilise prior information on marker
causality.
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Material and methods

Phenotype and marker data.
Estimated breeding values (EBVs) for stature and number of daughters were available

for 735 Jersey bulls from New Zealand and 5,553 Dutch Holstein bulls. Data was provided by
CRV BV (Cooperative Cattle Improvement Organization, Arnhem, the Netherlands). Stature
EBVs for all bulls were deregressed to obtain deregressed proofs (DRPs) according to the
method proposed by Calus et al., (2016). The output from this procedure were the DRPs and
effective daughter contributions (EDCs). Animals with EDCs of zero were removed, resulting
in 595 New Zealand Jersey bulls and 5,503 Dutch Holstein bulls in the final dataset. The
EDCs were used as weights for the DRPs in subsequent analyses.

Two sets of marker data were used. The first set was labelled as top markers’ and
comprised of 357 markers that were considered to be causal based on the result of a large
multi-breed meta-GWAS analysis using imputed whole genome sequence data (Bouwman et
al., 2015). From the list of markers with effect significantly different from zero P < 5e-8 in
the meta-GWAS study, only the markers that uniquely contributed to the proportion of
explained variance were selected (Yang et al., 2012). The second set of markers was those
present on the Bovine 50k chip and not present in the top markers. This second set, hereby
designated as 50k, comprised of 48,912 markers. For both marker sets, markers were kept
when the minor allele frequency is equal to or greater than , where N is the number of
genotyped individuals. This threshold was set within each breed.

Statistical models

Across breed genomic relationship matrices (GRMs) were calculated for all the animals
according to the first method of VanRaden (2008). Relationships were computed in the
calc_grm software (Calus, 2013). Three GRMs were formed using only the 50k markers
(GRM50k), only the top markers (GRMtop) and the 50k and top markers combined into a
single GRM (GRMall). Four different GREML models were fitted in ASReml (Gilmour et
al., 2009) as follows:

Model 1 used a single trait animal model with the 3 GRMs fitted one at a time.
(1)

Where is a vector containing stature DRPs, is the mean of the DRPs, is a vector of additive
genetic effects, is the design matrix that links  to the DRPs in and is a vector containing the
residuals. Both and are assumed to be normally distributed as and , where is the GRM, the
genetic variance, the residual variance and is a diagonal matrix that contains the EDCs, used
as weights for the DRPs in the model.
Model 2 used a single trait animal model with GRM50k and GRMtop fitted simultaneously

(2)
All model components are as described under model 1.
Model 3 used a multi-trait animal model with the 3 GRMs fitted one at a time, considering
stature in Holstein (H) as a different trait as stature in Jerseys (J).

(3)
where and
Model 4 used a multi-trait animal model with GRM50k and GRMtop fitted simultaneously.
The model was:

(4)
where ,



Models 1 and 2 were implemented in a i) within breed prediction scenario (WBP),
using only Jersey bulls as reference animals. All the jersey bulls were randomly split into 5
sets and these were used one time each as validation set in a 5-fold cross validation scheme.
ii) an across breed prediction scenario (ABP) using Holstein bulls as reference population and
Jersey bulls as validation population. The multi-trait models 3 and 4 were implemented in. iii)
multi-breed prediction scenario (MBP), using a reference population made up of both
Holstein and Jersey bulls and a validation population of only Jerseys. A 5-fold cross-
validation scheme was also used to obtained the genomic estimated breeding values of Jerseys
as described in WBP. Estimation of the proportion of genetic variance captured within a breed
was done using all bulls available within the breed, we used data on all bulls for that specific
breed. All animals from the two breeds were used for estimating . In all models, accuracy of
prediction was computed as the correlation between the genomic estimated breeding values
(GEBVs) of jersey bulls and their DRPs.

Results

Variance components

In general, more genetic variance was explained in the Holstein breed compared to the
Jersey (Table 1). When fitted alone, the top markers accounted for 75% of the total genetic
variance in Holstein and 49 to 51% in Jersey. However, when fitted simultaneously with the
50k, the top markers captured only 26% and 22% of the total genetic variance in Holstein and
Jersey respectively.

In the multi-trait analysis between Holstein and Jersey breeds using the 3 different
GRMs, the proportion of genetic variance explained in Holstein and jersey breeds were not
higher than those explained in the single trait models. the lowest estimate for (0.25) was
obtained when only the 50k was fitted (Table 1). The estimate was almost double (0.45)
when only the top markers were fitted. The estimate of for the top markers increased to 0.89
when 50k and top GRMs were fitted together.

Accuracy of prediction

Using solely Holstein bulls in the reference population to predict Jersey bulls GEBV
resulted in low accuracies ranging from 0.06 to 0.25 (Figure 1). Although using top markers
alone was more accurate than fitting only 50k (0.21 vs 0.06), the accuracy of prediction was
further improved when the model fitted top markers and 50k simultaneously (0.25). Unlike in
the across breed scenario, fitting the top markers alone in the within and multi-breed
prediction scenarios resulted in lower accuracies than the 50k. In both within and multi-breed
GP however, model 4 consistently gave the highest accuracy (0.42 and 0.45 respectively), as
was in the across breed scenario.
Discussion

Across breed GP can be seen as an approach that circumvents the challenge of small reference
population in numerically small breeds. Across breed GP does not take into account the
differences in population structure between breeds (De Roos et al., 2009; De Roos et al.,
2008; Zhong et al., 2009), most importantly, the differences in LD structure and minor allele
frequency. Because of differences in LD structure for example, the estimate of markers effects
in the reference and the validation breeds will be different (Hill & Robertson, 1968), thus
resulting in low and accuracy of across breed prediction. This explains why in our study,



using only the 50k for ABP resulted in low and a very low accuracy of prediction (0.06). The
challenge that remains therefore is to develop an approach that is able to minimize the effect
of differences in LD structure on the accuracy of across breed GP.

Our approach for reducing the effect of LD structure differences was to focus directly
on the potential causal (top) markers for the trait. Our expectation was that the effects of these
markers will be more consistent across breed and less affected by the differences in LD
structure, thus result in higher and accuracy. Our results agreed with this expectation (Figure
1). The main limitation of this approach was that the top markers alone did not explain the
total genetic variance for stature within the breeds (Table 1). Because of this limitation, we
tested other models in which we fit both the top markers and the 50k simultaneously, however
giving them different weights (model 2 for ABP and model 4 for MBP). The idea is that these
models are able to focus uniquely on the top markers, devoid of influence from the 50k.
Moreover, the 50k markers should pick up the remaining genetic variance not explained by
the top markers, such that they do not end up in the residual. In all the prediction scenarios,
this approach resulted in the highest accuracy of prediction (Figure 1). The difference
between model 2 and model 4 is that in model 2, is assumed to be 1 for both the top markers
and the 50k, while in model 4, are estimated for both the top markers and the 50k.
Furthermore, the estimated implicitly weights the contribution of Holstein information to
Jerseys, hence the higher accuracy in model 4 compared to 2.

Although the estimated for the top markers in model 4 increased to 0.89, the
corresponding increase in the accuracy of prediction is only marginal compared to fitting only
the top markers or top plus 50k markers (Figure 1). This is because the proportion of total
genetic variance captured reduced to 26% and 22% in Holsteins and Jerseys respectively. In
effect, the covariance between breeds which is a product of and variances captured remains
about the same. Moreover, the within breed accuracy for the Jerseys was already relatively
high. Our results indicate that for across population GP, it is beneficial to use a model that is
able to isolate the effects of potential causal markers and differentially weight them.
Furthermore, it helps to weight information across populations by the in a multi-trait model
approach, rather than naively assuming a of 1 between populations.

Conclusion

Based on the results of this study, it is feasible to use information from numerically
larger breeds like Holstein to improve the accuracy of selection in numerically small breeds
under two main conditions. i) animals from the small breed must be included themselves in
the reference population together with those from other breeds. ii) the prediction model
should take into account the differences in causality between the markers used by for
example, separating causal and non-causal markers in separate GRMs as was done in this
study.
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Table 1: Proportion of total genetic variance explained by each genomic relationship matrix
within Dutch Holstein and New Zealand Jersey bulls and the genetic correlation ( between
the two breeds (standard errors in parentheses). The within breed estimates were obtained
using a univariate model and a single breed’s data, while the multi-breed estimates were
obtained using a bivariate model in which the data of both breeds were fitted simultaneously.

Model with: Holstein* Jersey**

Within breed estimates

GRM50k 0.97 (0.00) 0.76 (0.05)



GRMtop 0.75 (0.02) 0.49 (0.06)

GRMall 0.97 (0.00) 0.76 (0.05)

GRMs 50k & top 0.70 (0.02) & 0.26 (0.02) 0.57 (0.07) & 0.22 (0.07)

Multi-breed estimates

GRM50k 0.96 (0.00) 0.76 (0.05) 0.25 (0.17)

GRMtop 0.75 (0.02) 0.51 (0.06) 0.45 (0.11)

GRMall 0.97 (0.00) 0.76 (0.05) 0.33 (0.17)

GRMs 50k & top 0.70 (0.02) & 0.26 (0.02) 0.57 (0.07) & 0.22 (0.07) 0.28 (0.20) & 0.89 (0.13)
* Values estimated using all Holstein bulls in the study and Jersey data were masked
**Values estimated using all Jersey bulls in the study and Holstein data were masked

Figure 1: Accuracy of genomic estimated breeding values (GENVs) for Jersey bulls in a
within breed (WBP), across breed (ABP) and multi-breed (MBP) scenario using the different
genomic relationship matrices (GRMs). Accuracy was computed as the correlation between
GEBVs of jerseys and their deregressed proof for stature. GRMtop was calculated based on
the genotypes of the top markers, GRM50K based on the genotypes of 50k markers and
GRMall based on the genotypes of the 50k and top markers combined.


