74 research outputs found

    Frequency Evaluation of the Interleukin-6 −174G>C Polymorphism and Homeostatic Iron Regulator (HFE) Mutations as Disease Modifiers in Patients Affected by Systemic Lupus Erythematosus and Rheumatoid Arthritis

    Get PDF
    Autoimmune diseases are generally characterized by a multifactorial etiology and are often associated with a genetic predisposition. Both iron metabolism and the inflammatory cytokine system have been shown to play a pivotal role in the dysregulation of the immune response in many different autoimmune conditions, rheumatologic diseases included. The purpose of this work was to analyze the frequency of mutations altering the expression of IL-6 or influencing iron metabolism in patients affected by autoimmune diseases such as Rheumatoid Arthritis (RA) and Systemic Lupus Erythematosus (SLE). In this study, 144 patients were enrolled: 77 and 67 patients were affected by RA and SLE, respectively. In these cohorts, the frequency of the IL-6 polymorphism −174G>C located in the IL-6 gene promoter was tested. Moreover, the frequencies of the three HFE gene variations associated with iron overload were analyzed: p.His63Asp, p.Ser65Cys and p.Cys282Tyr. The two mutations p.His63Asp and p.Ser65Cys in the HFE gene did not reach statistical significance in any of the comparisons, regardless of the statistical model, cohorts of patients and control populations analyzed. The frequencies of the p.Cys282Tyr mutation and the IL-6 polymorphism −174G>C were found to be overall significantly decreased in RA and SLE patients when the Dominant model and Allele contrast were adopted with both the Odds Ratio and Chi-square. Although further investigation is needed, the examination of the frequencies of the −174G>C IL-6 promoter polymorphism and HFE mutations may add some valuable information on the interplay linking iron metabolism, inflammation and immunity in autoimmune diseases such as SLE and RA

    Balancing scientific interests and the rights of participants in designing a recall by genotype study

    Get PDF
    Recall by genotype (RbG) studies aim to better understand the phenotypes that correspond to genetic variants of interest, by recruiting carriers of such variants for further phenotyping. RbG approaches pose major ethical and legal challenges related to the disclosure of possibly unwanted genetic information. The Cooperative Health Research in South Tyrol (CHRIS) study is a longitudinal cohort study based in South Tyrol, Italy. Demand has grown for CHRIS study participants to be enrolled in RbG studies, thus making the design of a suitable ethical framework a pressing need. We here report upon the design of a pilot RbG study conducted with CHRIS study participants. By reviewing the literature and by consulting relevant stakeholders (CHRIS participants, clinical geneticists, ethics board, GPs), we identified key ethical issues in RbG approaches (e.g. complexity of the context, communication of genetic results, measures to further protect participants). The design of the pilot was based on a feasibility assessment, the selection of a suitable test case within the ProtectMove Research Unit on reduced penetrance of hereditary movement disorders, and the development of appropriate recruitment and communication strategies. An empirical study was embedded in the pilot study with the aim of understanding participants’ views on RbG. Our experience with the pilot study in CHRIS allowed us to contribute to the development of best practices and policies for RbG studies by drawing recommendations: addressing the possibility of RbG in the original consent, implementing tailored communication strategies, engaging stakeholders, designing embedded empirical studies, and sharing research experiences and methodology

    Isomer-specific activity of dichlorodyphenyltrichloroethane with estrogen receptor in adult and suckling estrogen reporter mice

    Get PDF
    We investigated the tissue-specific effects of dichlorodyphenyltrichloroethane (DDT) isomers in adult and suckling newborn mice, using a novel mouse line engineered to express a reporter of estrogen receptor transcriptional activity (ERE-tkLUC mouse). The DDT isomers p,p'-DDT [1,1,1-trichloro2,2-bis(p-chlorophenyl) ethane] and o,p'-DDT [1,1,1-trichloro-2(p-chlorophenyl)-2-(o-chlorophenyl) ethane] were specifically selected as a weak and a strong estrogen, respectively. In adult male mice, p,p'-DDT induced luciferase activity in liver, brain, thymus, and prostate but not in heart and lung. The effect of p,p'-DDT was dose-dependent, maximal at 16 h after sc treatment, and completely blocked by the estrogen receptor antagonist ICI-182,780. In all the organs analyzed, except the liver, administration of o,p'-DDT showed a pattern of luciferase induction superimposable to that of its isomer p,p'-DDT. In liver, o,p'-DDT significantly decreased basal luciferase activity and blocked the reporter induction by 17beta-estradiol. These data lead us to hypothesize that a modulation of ER activity may be involved in the toxic effects of DDT demonstrated by epidemiological and experimental studies. Luciferase activity was also studied in 4-d-old mice lactating from a mother injected with either p,p'-DDT or o,p'-DDT. Both isomers induced a 2-fold increase in the newborn brain. An opposite effect was observed in liver, where p,p'-DDT increased and o,p'-DDT decreased luciferase, thus indicating that these compounds modulate ER activity in adult and newborn tissues by use of a similar mechanism. The ERE-tkLUC mouse proves to be a suitable tool to functionally assess the tissue specificity of estrogenic/antiestrogenic compounds in adult (as well as in suckling) mice

    Public preferences for digital health data sharing: Discrete choice experiment study in 12 european countries

    Get PDF
    Background: With new technologies, health data can be collected in a variety of different clinical, research, and public health contexts, and then can be used for a range of new purposes. Establishing the public s views about digital health data sharing is essential for policy makers to develop effective harmonization initiatives for digital health data governance at the European level. Objective: This study investigated public preferences for digital health data sharing. Methods: A discrete choice experiment survey was administered to a sample of European residents in 12 European countries (Austria, Denmark, France, Germany, Iceland, Ireland, Italy, the Netherlands, Norway, Spain, Sweden, and the United Kingdom) from August 2020 to August 2021. Respondents answered whether hypothetical situations of data sharing were acceptable for them. Each hypothetical scenario was defined by 5 attributes ("data collector," "data user," "reason for data use," "information on data sharing and consent," and "availability of review process"), which had 3 to 4 attribute levels each. A latent class model was run across the whole data set and separately for different European regions (Northern, Central, and Southern Europe). Attribute relative importance was calculated for each latent class s pooled and regional data sets. Results: A total of 5015 completed surveys were analyzed. In general, the most important attribute for respondents was the availability of information and consent during health data sharing. In the latent class model, 4 classes of preference patterns were identified. While respondents in 2 classes strongly expressed their preferences for data sharing with opposing positions, respondents in the other 2 classes preferred not to share their data, but attribute levels of the situation could have had an impact on their preferences. Respondents generally found the following to be the most acceptable: A national authority or academic research project as the data user; being informed and asked to consent; and a review process for data transfer and use, or transfer only. On the other hand, collection of their data by a technological company and data use for commercial communication were the least acceptable. There was preference heterogeneity across Europe and within European regions. Conclusions: This study showed the importance of transparency in data use and oversight of health-related data sharing for European respondents. Regional and intraregional preference heterogeneity for "data collector," "data user," "reason," "type of consent," and "review" calls for governance solutions that would grant data subjects the ability to control their digital health data being shared within different contexts. These results suggest that the use of data without consent will demand weighty and exceptional reasons. An interactive and dynamic informed consent model combined with oversight mechanisms may be a solution for policy initiatives aiming to harmonize health data use across Europe

    Genomewide association study for onset age in Parkinson disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Age at onset in Parkinson disease (PD) is a highly heritable quantitative trait for which a significant genetic influence is supported by multiple segregation analyses. Because genes associated with onset age may represent invaluable therapeutic targets to delay the disease, we sought to identify such genetic modifiers using a genomewide association study in familial PD. There have been previous genomewide association studies (GWAS) to identify genes influencing PD susceptibility, but this is the first to identify genes contributing to the variation in onset age.</p> <p>Methods</p> <p>Initial analyses were performed using genotypes generated with the Illumina HumanCNV370Duo array in a sample of 857 unrelated, familial PD cases. Subsequently, a meta-analysis of imputed SNPs was performed combining the familial PD data with that from a previous GWAS of 440 idiopathic PD cases. The SNPs from the meta-analysis with the lowest p-values and consistency in the direction of effect for onset age were then genotyped in a replication sample of 747 idiopathic PD cases from the Parkinson Institute Biobank of Milan, Italy.</p> <p>Results</p> <p>Meta-analysis across the three studies detected consistent association (p < 1 × 10<sup>-5</sup>) with five SNPs, none of which reached genomewide significance. On chromosome 11, the SNP with the lowest p-value (rs10767971; p = 5.4 × 10<sup>-7</sup>) lies between the genes <it>QSER1 </it>and <it>PRRG4</it>. Near the PARK3 linkage region on chromosome 2p13, association was observed with a SNP (rs7577851; p = 8.7 × 10<sup>-6</sup>) which lies in an intron of the <it>AAK1 </it>gene. This gene is closely related to <it>GAK</it>, identified as a possible PD susceptibility gene in the GWAS of the familial PD cases.</p> <p>Conclusion</p> <p>Taken together, these results suggest an influence of genes involved in endocytosis and lysosomal sorting in PD pathogenesis.</p
    • 

    corecore