1,569 research outputs found

    Effects of azimuth-symmetric acceptance cutoffs on the measured asymmetry in unpolarized Drell-Yan fixed target experiments

    Get PDF
    Fixed-target unpolarized Drell-Yan experiments often feature an acceptance depending on the polar angle of the lepton tracks in the laboratory frame. Typically leptons are detected in a defined angular range, with a dead zone in the forward region. If the cutoffs imposed by the angular acceptance are independent of the azimuth, at first sight they do not appear dangerous for a measurement of the cos(2\phi)-asymmetry, relevant because of its association with the violation of the Lam-Tung rule and with the Boer-Mulders function. On the contrary, direct simulations show that up to 10 percent asymmetries are produced by these cutoffs. These artificial asymmetries present qualitative features that allow them to mimic the physical ones. They introduce some model-dependence in the measurements of the cos(2\phi)-asymmetry, since a precise reconstruction of the acceptance in the Collins-Soper frame requires a Monte Carlo simulation, that in turn requires some detailed physical input to generate event distributions. Although experiments in the eighties seem to have been aware of this problem, the possibility of using the Boer-Mulders function as an input parameter in the extraction of Transversity has much increased the requirements of precision on this measurement. Our simulations show that the safest approach to these measurements is a strong cutoff on the Collins-Soper polar angle. This reduces statistics, but does not necessarily decrease the precision in a measurement of the Boer-Mulders function.Comment: 13 pages, 14 figure

    Growing Cayley trees described by Fermi distribution

    Full text link
    We introduce a model for growing Cayley trees with thermal noise. The evolution of these hierarchical networks reduces to the Eden model and the Invasion Percolation model in the limit T0T\to 0, TT\to \infty respectively. We show that the distribution of the bond strengths (energies) is described by the Fermi statistics. We discuss the relation of the present results with the scale-free networks described by Bose statistics

    Ising model simulation in directed lattices and networks

    Full text link
    On directed lattices, with half as many neighbours as in the usual undirected lattices, the Ising model does not seem to show a spontaneous magnetisation, at least for lower dimensions. Instead, the decay time for flipping of the magnetisation follows an Arrhenius law on the square and simple cubic lattice. On directed Barabasi-Albert networks with two and seven neighbours selected by each added site, Metropolis and Glauber algorithms give similar results, while for Wolff cluster flipping the magnetisation decays exponentially with time.Comment: Expanded to 8 pages: additional author, additional result

    A Superconductor Made by a Metal Heterostructure at the Atomic Limit Tuned at the "Shape Resonance": MgB2

    Full text link
    We have studied the variation of Tc with charge density and lattice parameters in Mg1-xAlxB2 superconducting samples at low Al doping x<8%. We show that high Tc occurs where the chemical potential is tuned at a "superconducting shape resonance" near the energy Ec of the quantum critical point (QCP) for the dimensional transition from 2D to 3D electronic structure in a particular subband of the natural superlattice of metallic atomic boron layers. At the "shape resonance" the electrons pairs see a 2D Fermi surface at EF-w0 and a 3D Fermi surface at EF+wo, where wo is the energy cut off of the pairing interaction. The resonant amplification occurs in a narrow energy range where EF-Ec is in the range of 2wo.Comment: 16 page

    Weighted Multiplex Networks

    Get PDF
    One of the most important challenges in network science is to quantify the information encoded in complex network structures. Disentangling randomness from organizational principles is even more demanding when networks have a multiplex nature. Multiplex networks are multilayer systems of NN nodes that can be linked in multiple interacting and co-evolving layers. In these networks, relevant information might not be captured if the single layers were analyzed separately. Here we demonstrate that such partial analysis of layers fails to capture significant correlations between weights and topology of complex multiplex networks. To this end, we study two weighted multiplex co-authorship and citation networks involving the authors included in the American Physical Society. We show that in these networks weights are strongly correlated with multiplex structure, and provide empirical evidence in favor of the advantage of studying weighted measures of multiplex networks, such as multistrength and the inverse multiparticipation ratio. Finally, we introduce a theoretical framework based on the entropy of multiplex ensembles to quantify the information stored in multiplex networks that would remain undetected if the single layers were analyzed in isolation.Comment: (22 pages, 10 figures

    Calculation of fragmentation functions in two-hadron semi-inclusive processes

    Get PDF
    We investigate the properties of interference fragmentation functions arising from the emission of two leading hadrons inside the same jet for inclusive lepton-nucleon deep-inelastic scattering. Using an extended spectator model for the mechanism of the hadronization, we give a complete calculation and numerical estimates for the examples of a proton-pion pair produced with invariant mass on the Roper resonance, and of two pions produced with invariant mass close to the ρ\rho mass. We discuss azimuthal angular dependence of the leading order cross section to point up favourable conditions for extracting transversity from experimental data.Comment: 5 pages, 3 figures in .eps format, AIP and epsfig styles included, to appear in proceedings of "Second Workshop on Physics with an Electron Polarized Light Ion Collider", MIT, Sept. 14-16, 200

    A model for liquid-striped liquid phase separation in liquids of anisotropic polarons

    Full text link
    The phase separation between a striped polaron liquid at the particular density and a high density polaron liquid is described by a modified Van der Waals scheme. The striped polaron liquid represents the pseudo gap matter or Wigner-like polaron phase at 1/8 doping in cuprate superconductors. The model includes the tendency of pseudo- Jahn-Teller polarons to form anisotropic directional bonds at a preferential volume with the formation of different liquid phases. The model gives the coexistence of a first low density polaron striped liquid and a second high density liquid that appears in cuprate superconductors for doping larger than 1/8. We discuss how the strength of anisotropic bonds controls the variation the phase separation scenarios for complex systems in the presence of a quantum critical point where the phase separation vanishes.Comment: 10 pages, 3 figure
    corecore