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One of the most important challenges in network science is to quantify the information encoded in
complex network structures. Disentangling randomness from organizational principles is even more
demanding when networks have a multiplex nature. Multiplex networks are multilayer systems of N
nodes that can be linked in multiple interacting and co-evolving layers. In these networks, relevant
information might not be captured if the single layers were analyzed separately. Here we demonstrate
that such partial analysis of layers fails to capture significant correlations between weights and
topology of complex multiplex networks. To this end, we study two weighted multiplex co-authorship
and citation networks involving the authors included in the American Physical Society. We show that
in these networks weights are strongly correlated with multiplex structure, and provide empirical
evidence in favor of the advantage of studying weighted measures of multiplex networks, such as
multistrength and the inverse multiparticipation ratio. Finally, we introduce a theoretical framework
based on the entropy of multiplex ensembles to quantify the information stored in multiplex networks
that would remain undetected if the single layers were analyzed in isolation.

A large variety of systems, including social,
infrastructure, and biological ones, can be de-
scribed as multiplex networks in which pairs of
nodes can be connected through multiple links
across multiple layers. Over the past fifteen years
scientists have investigated the single layers of
these networks, thus neglecting to uncover the
information encoded in their multiplex nature.
Here we focus on weighted multiplex networks,
and provide evidence that novel information
can be extracted when the interacting and co-
evolving layers are taken into account. To this
end, we propose a new indicator based on the
entropy of multiplex ensembles for quantifying
the amount of information that would remain
undetected if single layers of multiplex networks
were analyzed in isolation.

Network theory investigates the global topology and
organization structure of graphs formed by individual in-
teractions among the constituent elements of a number
of complex systems including social groups, infrastruc-
ture and technological systems, the brain and biologi-
cal networks @—@] Over the last fifteen years, a large
body of literature has attempted to disentangle noise and
stochasticity from non-random patterns and mechanisms,
in an attempt to gain a better understanding of how
these systems function and evolve. More recently, fur-
ther advances in the study of complex systems have been
spurred by the upsurge of interest in multiplex networks
in which pairs of interacting elements are represented as
nodes connected through multiple types of links, at mul-
tiple points in time, or at multiple scales of resolution ﬂa]
More specifically, a multiplex network is a set of N nodes
interacting in M layers, each reflecting a distinct type
(or time or resolution) of interaction linking the same

pair of nodes. Examples of multiplex networks include:
social networks, where the same individuals can be con-
nected through different types of social ties originating
from friendship, collaboration, or family relationships ﬂa],
air transportation networks, where different airports can
be connected through flights of different companies ﬂﬂ],
and the brain, where different regions can be seen as con-
nected by the functional and structural neural networks

8.

Most of the studies so far conducted on multiplex net-
works have been concerned with the empirical analysis
of a wide range of systems 6, B, , ], with modeling
their underlying structures , and with describing
new critical phenomena and processes occurring on them

|. Despite the growing interest in multiplex net-
works, a fundamental question still remains largely unan-
swered: What is the advantage of a full-fledged analysis
of complex systems that takes all their interacting layers
into account, over more traditional studies that represent
such systems as single networks with only one layer? To
answer this question, one should demonstrate that novel
and relevant information can be uncovered only by taking
the multiplex nature of complex systems directly into ac-
count, and would instead remain undetected if individual
layers were analyzed in isolation. In this paper, an at-
tempt is made to offer a possible solution to this problem
within the context of weighted multiplex networks.

Like with single networks, links between nodes may
have a different weight, reflecting their intensity, capac-
ity, duration, intimacy or exchange of services ﬂﬁ] The
role played by the weights in the functioning of many
networks, and especially the relative benefits of weak
and strong ties in social networks, have been the sub-
ject of a longstanding debate M] Moreover, it has
been shown that, in single networks, the weights can be
distributed in a heterogeneous way, as a result of the
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FIG. 1: Example of all possible multilinks in a multiplex net-
work with M = 2 layers and N = 5 nodes. Nodes ¢ and j are
linked by one multilink m = (Ma, Ma).

non-trivial effects that the structural properties of the
networks have on them ] In particular, correlations
between weights and structural properties of single net-
works can be uncovered by the analysis of strength-degree
correlations and by the distribution of the weights of
the links incident upon the same node. To character-
ize weighted networks, it is common practice to measure
the following quantities: i) the average strength of nodes
of degree k, i.e. s = s(k), describing how weights are dis-
tributed in the network; and ii) the average inverse par-
ticipation ratio of the weights of the links incident upon
nodes of degree k, i.e. Y = Y (k), describing how weights
are distributed across the links incident upon nodes of
degree k. Here we show that these two quantities do
not capture the full breadth of the information encoded
in multiplex networks. Indeed, a full-fledged analysis of
the properties of multiplex networks is needed that takes
the multiple interacting and co-evolving layers simulta-
neously into account.

For a multiplex network, a multilink m =
(m1, ma,...,my) between nodes i and j indicates the
set of all links connecting these nodes in the different
layers m] In particular, if m, = 1, there is a link be-
tween nodes ¢ and j in layer a, whereas if m, = 0 nodes
i and j are not connected in layer a. Multilink 7 = 0
between two nodes refers to the case in which no link ex-
ists between the two nodes in all layers of the multiplex
network. Thus, multilinks indicate the most straightfor-
ward type of correlation between layers, and provide a
simple generalization of the notion of overlap. In fact,
if nodes 7 and j are connected by a multilink 7} , with
Mo = My = 1, it follows that there is an overlap of links
between ¢ and j in layers o and . Figure [I] shows a
multiplex network with M = 2 layers and N = 5 nodes
with different types of multilinks.

Here we will define two new measures, multistrength
and the inverse multiparticipation ratio, which are, re-
spectively, the sum of the weights of a certain type of
multilink incident upon a single node and a way for char-
acterizing the heterogeneity of the weights of multilink
m incident upon a single node. To provide empirical
evidence that weighted properties of multilinks are fun-
damental for properly assessing weighted multiplex net-
works, we focus on the networks of the authors of pa-
pers published in the journals of the American Physical
Society (APS), and analyze the scientific collaboration
network and the citation network connecting the same
authors. These networks are intrinsically weighted since
any two scientists can co-author more than one paper and
can cite each other’s work several times. A large num-
ber of studies have analyzed similar bibliometric datasets
drawing upon network theory M] Unlike these stud-
ies, here we investigate the APS bibliometric dataset us-
ing the framework of multiplex networks that allows us
to explore novel properties of the collaboration and cita-
tion networks. In particular, we show that multistrength
and the inverse multiparticipation ratio enable new rele-
vant information to be extracted from the APS dataset
and that this information extends beyond what is en-
coded in the strength and inverse participation ratio of
single layers. Finally, based on the entropy of multiplex
ensembles, we propose an indicator = to evaluate the
additional amount of information that can be extracted
from the weighted properties of multilinks in multiplex
networks over the information encoded in the properties
of their individual layers analyzed separately.

I. WEIGHTED MULTIPLEX NETWORKS

A. Definition

A weighted multiplex network is a set of M weighted
networks Go = (V, E,), with o = 1,..., M. The set of
nodes V is the same for each layer and has cardinality
|[V| = N, whereas the set of links E, depends on the
layer . A multiplex network is represented formally as
G = (G1,Ga,...,Gq,...Gar). Each network Gy is fully
described by the adJacency matrix a® with elements au,
where af; = w{; > 0 if there is a link with weight wy;
between nodes 7 and j in layer «, and af; =0 otherwise.
From now on, in order to simplify the formalization of
weighted multiplex networks, we will assume that the
weight of the link between any pair of nodes ¢ and j,
ag; = wy;, can only take integer values. This does not
represent a major limitation because in a large number
of weighted multiplex networks the weights of the links

can be seen as multiples of a minimal weight.



B. Structural properties of individual layers

We indicate the degree of node ¢ in layer o with &,
defined as kf = ZN 0(a:), where function 6(z) = 1

j=1 Y\
if £ > 0 and 0(x) - 0 otherwise. In complex weighted
networks, weights can be distributed across links more or
less heterogeneously. A way to evaluate this heterogene-
ity is to introduce local properties such as the strength s§
and the inverse participation ratio Y;* of node ¢ in layer
o

ve - i(—) (1)

Like with single networks, in any given layer «, the
strength s$ of a node indicates the sum of the weights of
the links incident upon node 7 in layer «, whereas the in-
verse participation ratio Y;* indicates how unevenly the
weights of the links of node 4 are distributed in layer o.
The inverse of Y, characterizes the effective number of
links of node i in layer a. Indeed, (Y;*)~! is greater than
one and smaller than the degree of node 7 in layer «;, i.e.
(V)= € (1,k%). Moreover, if the weights of the links
of node i are distributed uniformly, i.e. wi; = si/kf, we
have (Y;*)~! = k2. Conversely, if the weight of one link
is much larger than the other weights, i.e. w§. > wf; for
every j # r, then (V)™ = 1.

In network theory, it is common practice to evaluate
the conditional means of the strength and of the in-
verse participation ratio of the weights of links against
the degree of nodes. In a multiplex network, we will
then consider the quantities s*(k) = (s®d(k{, k)) and
Ye(k) = (Y,*6(k&, k)), where the average is calculated
over all nodes with degree k in layer «, and d(a, b) indi-
cates the Kronecker delta. Like in single networks ],
s is expected to scale as

5% (k) o kP, (2)

with 8, > 1. We can distinguish between two scenarios.
In the first one, the average strength of nodes with degree
k increases linearly with k, i.e. 8, = 1. This indicates
that, on average, the weights of the links incident upon
the hubs do not differ from the weights of the links of less
connected nodes. In the second scenario, the strength
of the nodes with degree k increases super-linearly with
k, i.e. B, > 1, thus indicating that, on average, the
weights of the links incident upon the hubs are larger
than the weights of the links of less connected nodes.
In a multiplex network, it may be the case that weights
are distributed in different ways across the layers. For
instance, some layers may be characterized by a super-
linear growth of s¢, while other layers may show a linear
dependence. Finally, the inverse participation ratio can
be used in order to characterize the heterogeneity of the

weights of the links incident upon nodes with a certain
degree. In particular, it has been observed that, in many
single weighted networks, the inverse participation ratio
scales as an inverse power-law function of the degree of
nodes. In a multiplex network, this would imply

YR) o e Q

where exponent \, < 1 is layer-dependent.

C. Multilink, multistrength, and inverse
multiparticipation ratio

A number of multiplex networks are characterized by
a significant overlap of links across the different lay-
ers |6, B] In order to generalize the notion of overlap
to weighted multiplex networks, in what follows we will
draw on the concept of multilink ﬂﬂ] Let us consider
the vector m = (mi,ma,...,Mqa,...,my) in which ev-
ery element m, can take only two values m, = 0,1. We
define a multilink m the set of links connecting a given
pair of nodes in the different layers of the multiplex and
connecting them in the generic layer o only if mq, = 1. In
particular two nodes ¢ and j are always linked by a single
multilink of type m = m* = (0(aj;),0(a;),...,0(al])),
where 6(z) = 1 if z > 0, and 6(x) = 0 otherwise. The
multilink 7 = 0 between two nodes represents the situ-
ation in which in all the layers of the multiplex the two
nodes are not directly linked. We can therefore introduce
the multiadjacency matrices A™ with elements AZ? equal
to 1 if there is a multilink m between node ¢ and node j
and zero otherwise.
In terms of the weighted adjacency matrices a® of the
multiplex the elements AZ? of the multiadjacency matrix

A" are given by

=

A7 = [110a)me + (1= 0(af))(1 = ma)]  (4)

a=1

where 0(z) = 1if z > 0, otherwise f(x) = 0. Even though
there are 2™ multiadjacency matrices, only 2™ — 1 of
them are independent because the normalization condi-
tion, >~ - A;? = 1, must be satisfied for any pair of nodes
7 and j. Based on multi-adjacency matrices, we can de-
fine the multidegree kI of node i as

N
K=" AT (5)
j=1

which indicates how many multilinks 7 are incident upon
node 1.

To study weighted multiplex networks, we now intro-
duce two new measures. For layer a associated to multi-
links 7, such that m, > 0, we define the multistrength
s?}a and the inverse multiparticipation ratio Y]’Z of node



i, respectively, as

N
sio= Y af Al (6)
j=1

N aAﬁi 2
- ad A
Y = B i N (7)
Since there are (];j) multilinks 7 such that ) mq =k,
for each node the number of multistrengths that can
be defined in a multiplex network of M layers is K =
M2M=1 " The average multistrength of nodes with a

given multidegree, i.e s (k™) = <s;ﬁ’a5(/€§ﬁ, km)>, and
the average inverse multiparticipation ratio of nodes with
a given multidegree, Y (k") = <Yim’°‘5(k§ﬁ, km)>, are

expected to scale as

1
e a

with exponents (.o > 1 and Ay o < 1. The use of mul-
tilinks 7 to describe multiplex properties is numerically
feasible if the number of layers is smaller than the num-
ber of nodes, i.e. M < log(N). If this condition is not
satisfied, then the following quantities can be measured:
the overlap multiplicity, v(m) =3, mq, which indicates
that multilink 7 connects two nodes through v(17) links;
sY(v) = <5Ta>y(7ﬁ):,,; and Y(v) = <}/7;772>V(7ﬁ):y7 where

v=12..., M.

II. EMPIRICAL EVIDENCE OF WEIGHTED
PROPERTIES OF MULTILINKS

In this section, we will draw on the measures intro-
duced above and provide empirical evidence that, in
weighted multiplex networks, weights can be correlated
with the multiplex structure in a non-trivial way. To this
end, we analyzed the bibliographic dataset that includes
all articles published in the APS journals (i.e., Physical
Review Letters, Physical Review, and Reviews of Mod-
ern Physics) from 1893 to 2009. Of these articles, the
dataset includes their citations as well as the authors.
Here, we restrict our study only to articles published ei-
ther in Physical Review Letters (PRL) or in Physical
Review E (PRE) and written by ten or fewer authors,
n, < 10. We constructed multiplex networks in which
the nodes are the authors and links between them have
a two-fold nature: scientific collaborations with weights
defined as in [25] (see Supplementary Material for de-
tails), and citations with weights indicating how many
times author ¢ cited author j.

In particular, we created the following two duplex net-
works (i.e., multiplex networks with M = 2):

1. CoCo-PRL/PRE: collaborations among PRL
and PRE authors. The nodes of this multiplex net-
work are the authors with articles published both in
PRL and PRE (i.e., 16,207 authors). These nodes
are connected in layer 1 through weighted undi-
rected links indicating the strength of their collabo-
ration in PRL (i.e., co-authorship of PRL articles).
The same nodes are connected in layer 2 through
weighted undirected links indicating the strength
of their collaboration in PRE (i.e., co-authorship
of PRE articles).

2. CoCi-PRE: collaborations among PRE authors
and citations to PRE articles. The nodes of this
multiplex network are the authors of articles pub-
lished in PRE (i.e., 35,205 authors). These nodes
are connected in layer 1 through weighted undi-
rected links indicating the strength of their col-
laboration in PRE (i.e., co-authorship of PRE
articles). The same nodes are connected in layer
2 through weighted directed links indicating how
many times an author (with articles in PRE) cited
another author’s work, where citations are limited
to those made to PRE articles.

Both these multiplex networks show a significant over-
lap of links and a significant correlation between degrees
of nodes as captured by the Pearson correlation coeffi-
cient p (see Supplementary Material). This finding sup-
ports the hypothesis that the two layers in each of the
multiplex networks are correlated. That is, the existence
of a link between two authors in one layer is correlated
with the existence of a link between the same authors in
the other layer. Moreover, the multidegrees of the mul-
tiplex networks are broadly distributed, and the hubs in
the scientific collaboration network tend to be also the
hubs in the citation network (see Supplementary Mate-
rial).

In the case of the CoCo-PRL/PRE network, multi-
links m = (1,0), m = (0,1) and m = (1,1) refer to
collaborations only in PRL, only in PRE, and in both
PRL and PRE, respectively. Moreover, to distinguish
the weights used when evaluating multistrength, we have
a = PRL or « = PRE. Results indicate that the multi-
strengths and inverse multiparticipation ratio behave ac-
cording to Eq. (A]) (see Fig.2). The difference between
exponents S5 prr for m = (1,0) and m = (1,1) is not
statistically significant. Nevertheless, there is a statisti-
cally significant difference between the average weights
of multilinks (1,0) and (1,1) in the PRL layer. As to
the inverse multiparticipation ratio, there is a significant
variation in the exponents, A1 0),prr, = 0.84 £ 0.03 and
A(1,1),prr = 0.74 £+ 0.05 (see Fig. 2] bottom left panel).
This suggests that the weights of the collaborative links
between co-authors of both PRL and PRE articles are
distributed more heterogeneously than the weights of col-
laborative links between co-authors of articles published
only in PRL (see Supplementary Material for details on
our statistical tests). Similar results were found for mul-
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FIG. 2: Average multistrength and average inverse multipar-
ticipation ratio versus multidegree in the CoCo-PRE/PRL
multiplex network. The average multistrengths and the aver-
age inverse multiparticipation ratio are fitted by a power-law
distribution of the type described in Eq. (A8) (fitted distri-
butions are here indicated by black dashed lines). Statisti-
cal tests for the collaboration network of PRL suggest that
the exponents 7,1 defined in Eq. (A8)) are the same, while
exponents Ay prr are significantly different. Similar results
can be obtained for the exponents in the PRE collaboration
layer. Nevertheless, multistrengths s are always larger
that multistrengths sWOLPRL and s(ODPEE - when multi-
strengths are calculated over the same number of multilinks,
ie. KD = (10 — O (see Supplementary Material for
the statistical test on this hypothesis).

tistrengths evaluated in the PRE layer (see Fig.[2 right
panels).

These findings clearly indicate that the partial anal-
ysis of individual layers would fail to uncover the fact
that the average weight of the link between authors that
collaborated both on PRL and PRE articles is signifi-
cantly larger than the average weight of the link between
authors that collaborated only on articles published in
one journal. Moreover, the difference in functional be-
havior of the multipartition ratio across layers could not
be captured if layers were analyzed separately.

In the case of the CoCi-PRE network there are even
more significant differences between the properties of the
multilinks than in the previous network. In the CoCi-
PRE network the functional behavior of multistrength
also depends on the type of multilink. Figure [B] shows
the average multistrength in the CoCi-PRE network. To
distinguish between the weights used to measure mul-
tistrength, we have layer a@ = col, which refers to the
collaboration network constructed on PRE articles, and
layer o = cit, which refers to the citation network be-
tween PRE articles, where a distinction is also made
between incoming (in) and outgoing (out) links. First,
in the scientific collaboration network, exponents By col

are not statistically different, but the average weight
of multilink (1,1) is larger than the average weight of
multilinks (1,0),in and (1,0)out. Moreover, exponents
A(1,0),col,in a0d A(1,0),col,out are larger than exponents
A(1,1),colyins A(1,1),col,out> iNdicating that the weights of au-
thors’ collaborative links with other cited/citing authors
are distributed more heterogeneously than the weights
of authors’ collaborative links with other authors with
whom there are no links in the citation network. Second,
in the citation network multistrengths follow a distinct
functional behavior depending on the different type of
multilink, and are characterized by different 8 it in/out
exponents. In fact the fitted values of these exponents are
given by B(1 1)cit,in = 1.30 £0.07, B1,1) cit,out = 1.32 =
0.08, B(0,1,)cit,in = 1.11 £ 0.01, B(0,1),cit,out = 1.10 £ 0.02.
This implies that, on average, highly cited authors are
cited by their co-authors to a much greater extent than
is the case with poorly cited authors. A similar, though
much weaker effect was also found for the citations con-
necting authors that are not collaborators. Furthermore,
in the citation layer the inverse multiparticipation ra-
tio for multilink (1,1) is always larger than the inverse
multiparticipation ratio for multilinks (1,0) and (0,1)
(see Supplementary Material for details on the statis-
tical test). Finally, when single layers were analyzed
separately, we found S.o; = 1.03 & 0.04 in the collabo-
ration network, and Beitin = 1.13 £0.02 and Beit,our =
1.14 + 0.03 in the citation network. This indicates that
in the citation network strength grows super-linearly as
a function of degree, i.e. weights are not distributed uni-
formly. Nevertheless, correlations between weights and
types of multilinks cannot be captured if the two indi-
vidual layers are studied separately.

A. Assessing the informational content of weighted
multilinks

Recent research on single networks has shown that the
entropy of network ensembles provides a very powerful
tool for quantifying their complexity . Here, we
propose a theoretical framework based on the entropy of
multiplex ensembles for assessing the amount of infor-
mation encoded in the weighted properties of multilinks.
Multiplex weighted network ensembles can be defined as
the set of all weighted multiplex networks satisfying a
given set of constraints, like for example the expected
degree sequence and the expected strength sequence in
every layer of the multiplex network, or the expected
multidegree sequence and the expected multistrength se-
quence. A set of constraints imposed upon the multi-
plex network ensemble uniquely determines the probabil-
ity P(G) of the multiplex networks in the ensemble (see
Materials and Methods). The entropy S of the multiplex

ensemble can be defined in terms of P(é) as

ZP

)log P(G), 9)



PRE _PRE ~ PRE
collaborations citations in citations out
3+ LDin 1 Leany g [ s al
Weanon 3 FIGL w0 EGD el
A ,fr@Oin 1 F / R / 3
€ 107g- WOyout = 3 3
g b 1 L. 1
“n10F P
o 1 ¢
10 ¢ R 3
S IR R ST R Lol
0
10 s T S B N A
Eoey 1 B N ]
~ F ] F 1
e E b E E E|
= -1 _ £ 3
£ 107:. @yin ER F .
= (L1)out 1 - @y E e« (11 3
> 4 (L.0)in I I I E . Eo,li 23
< (1,0) out b L L ]
10" 10° 10" 10° 10°10° 10" 10° 10*10° 10" 10° 10°

k(mrmz) k(ml' m,) k(ml,mz)

FIG. 3: Properties of multilinks in the weighted CoCi-PRE
multiplex network. In the case of the collaboration network,
the distributions of multistrengths versus multidegrees always
have the same exponent, but the average weight of multilinks
(1,1) is larger than the average weight of multilinks (1,0).
Moreover, the exponents A(1,0),col,in, A(1,0),col,out are larger
than exponents A(1,1),cot,ins A(1,1),col,out- 1IN the case of the
citation layer, both the incoming multistrengths and the out-
going multistrengths have a functional behavior that varies
depending on the type of multilink. Conversely, the aver-
age inverse multiparticipation ratio in the citation layer does
not show any significant change of behavior when compared
across different multilinks.

where S indicates the logarithm of the typical number
of multiplex networks in the ensemble. The smaller the
entropy, the larger the amount of information stored in
the constraints imposed on the network. The entropy
can be regarded as an unbiased way to evaluate the in-
formational value of these constraints.

In order to gauge the information encoded in a
weighted multiplex network with respect to a null model,
we define the indicator ¥, which quantifies how much
information is carried by the weight distributions of a
weighted multiplex ensemble. In particular, ¥ compares
the entropy of a weighted multiplex ensemble S with the
entropy of a weighted multiplex ensemble in which the
weights are distributed homogeneously. Therefore, ¥ can
be defined as

_ 8= (S)eul (10)

where <(5S)2>W(w) is the standard deviation, and the
average (...)r(w) is calculated over multiplex networks
with the same structural properties but with weights dis-
tributed homogeneously. In particular, when the weight
distribution is randomized, the multiplex networks are
constrained in such a way that each link must have a
minimal weight (i.e. w;; > 1), while the remaining of the

total weight is distributed randomly over the links.

In order to evaluate the amount of information encoded
in the weight of links in single layers and compare it to
the information supplied by multistrength, we consider
the following undirected multiplex ensembles:

e Correlated weighted multiplexr ensemble. In this en-
semble, we fix the expected multidegree sequence
{k"} and we set the expected multistrength se-

quence {5} to be
s C,ﬁ)a(km’a))\m‘o‘ (11)

for every layer a. We call U™ the U calculated
from this ensemble.

e Uncorrelated weighted multiplex ensemble. In this
ensemble, we set the expected degree kf* of every
node ¢ in every layer a = 1, 2 to be equal to the sum
of the multidegrees (with m, = 1) in the correlated
weighted multiplex ensemble. We set the expected
strengths s of every node ¢ in every layer a to
be equal to the sum of the multistrengths of node
1 in layer a in the correlated weighted multiplex
ensemble. We call " the ¥ calculated from this
ensemble.

In the correlated weighted multiplex ensemble the
properties of the multilinks are accounted for, while in
the uncorrelated weighted multiplex ensemble the differ-
ent layers of the multiplex networks are analyzed sepa-
rately (see Supplementary Material for the details). Fi-
nally, to quantify the additional amount of information
carried by the correlated multiplex ensemble with respect
to the uncorrelated multiplex ensemble, we define the in-
dicator = as

corr
= e (12)

Jyuncorr '

[1]

As an example of a possible application of the indi-
cator =, we focus on a case inspired by the CoCi-PRE
multiplex network, where we consider different exponents
Bra,injout for different multilinks. First, we created
the correlated multiplex ensemble with power-law mul-
tidegree distributions with exponents 7(1,,,) = 2.6 for
ma = 0,1 and v(0,1),(in/out) = 1.9, where (for multidegree
(0,1) we imposed a structural cut-off). Multistrengths
satisfy Eq. (C2), with ¢z.o = 1 and B(1 m,)1 = 1, for
mo = 0,1; Bu1y2 = 1.3, B,y = 1.1. Second, for
the second layer, we created the uncorrelated version of
the multiplex ensemble which is characterized by a super-
linear dependence of the average strength on the degree of
the nodes. We then measured ¥ as a function of network
size N for these different ensembles. Numerically, the av-
erage (...).(,) was evaluated from 100 randomizations.
Figure Ml shows that ¥ increases with network size N as
a power law, and that = fluctuates around an average
value of 1.256. These findings indicate that a significant
amount of information is contained in multistrength and
cannot be extracted from individual layers separately.
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the average value of = over the different multiplex network
sizes.

Similar results, not shown here, were obtained with a
correlated weighted multiplex ensemble characterized by
non-trivial inverse multiparticipation ratios.

III. CONCLUSIONS

In this paper, we have shown that weighted multi-
plex networks are characterized by significant correla-
tions across layers, and in particular that weights are
closely correlated with the multiplex network structure.
To properly detect these correlations, we have introduced
and defined two novel weighted properties of multiplex
networks, namely the multistrength and the inverse mul-
tiparticipation ratio, that cannot be reduced to the prop-
erties of single layers. These weighted multiplex proper-
ties capture the crucial role played by multilinks in the
distribution of weights, i.e. the extent to which there
is a link connecting each pair of nodes in every layer
of the multiplex network. To illustrate an example of
weighted multiplex networks displaying non-trivial cor-
relations between weights and topology, we analyzed the
weighted properties of multilinks in two multiplex net-
works constructed by combining the co-authorship and
citation networks involving the authors included in the
APS dataset. Finally, based on the entropy of multi-
plex ensembles, we developed a theoretical framework
for evaluating the information encoded in weighted mul-
tiplex networks, and proposed the indicator ¥ for quanti-

fying the information that can be extracted from a given
dataset with respect to a null model in which weights are
randomly distributed across links. Moreover, we have
proposed a new indicator = that can be used to evaluate
the additional amount of information that the weighted
properties of multilinks provide over the information con-
tained in the properties of single layers. In summary, in
this paper we have provided compelling evidence that
the analysis of multiplex networks cannot be simplified
to the partial analysis of single layers, and in particular
that non-trivial information can be uncovered only by
shifting emphasis on a number of weighted properties of
multilinks.

IV. MATERIALS AND METHODS

We can build a multiplex ensemble by maximizing the
entropy S of the ensemble given by Eq. (BI)) under the
condition that the constraints imposed upon the multi-
plex networks are satisfied on average over the ensemble
(soft constraints). We assume there are K of such con-
straints determined by the conditions

> P(G)FL(G) = Cy, (13)
-
G

—

for p = 1,2..., K, where F,(G) determines one of the
structural constraints that we want to impose on average
on the multiplex network. The most unbiased multiplex
ensemble satisfying the constraints given by Egs. (B2)
maximizes the entropy & under these constraints. In this
ensemble, the probability P(é) for a multiplex network

G of the ensemble is given by

P(G) = %exp (14)

- Zquu(é)

where the normalization constant Z is called the “parti-
tion function” of the canonical multiplex ensemble and is
fixed by the normalization condition imposed on P(G),
whereas w,, are the Lagrangian multipliers enforcing the
constraints in Eq. (B2). The values of the Lagrangian
multipliers w, are determined by imposing the con-
straints given by Eq. (B2)), while for the probability
P(G) the structural form given by Eq. ([B4) is assumed.
We refer to the entropy S given by Eq. (BI) calculated
using the probability P(G) given by Eq. (B4) as the
Shannon entropy of the multiplex ensemble. For all the
details on the derivation of the entropy for these ensem-
bles, we refer the interested reader to the Supplementary
Material.

G. M. acknowledges the kind hospitality of Queen
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Appendix A: Additional information on the multiplex networks analyzed in this study
1. The details on the two datasets

We have considered the American Physical Society (APS) research data that is organized into two main datasets:

e Article metadata: for each article the metadata includes DOI, journal, volume, issue, first page and last page,
article id and number of pages, title, authors, affiliations, publication history, PACS codes, table of contents,
heading, article type, and copyright information.

e Cliting article pairs: this dataset consists of pairs of APS articles that cite each other. Each pair is represented
by a pair of DOIs. The first id cites the second id.

In the APS metadata an author is usually identified by given name, middle name, and surname. In different articles,
the same author can appear with her full name or with her initials. To deal with this issue, we decided to identify a
specific author with the initials of his/her given name and middle name and with his/her full surname.

We restricted our analysis to the article metadata and citing article pairs that relate only to PRL and PRE. The
total number of PRL articles is 95,516 and the total number of PRL authors is 117,412. The total number of PRE
articles is 35,944 and the total number of PRE authors is 36,171. The number of authors that published both in
PRE and PRL is equal to 17,470.

Among the papers published in PRE and PRL, we focused our study only on those containing a number of authors
np < 10. This excludes most of the experimental high-energy collaborations that are typically characterized by a
number of authors of a different order of magnitude. We decided to place such a cut-off to the maximum number of
authors allowed per paper to avoid biases due to very large publications. Given the cut-off, our study thus becomes
limited to 35, 766 PRE articles (99.5 %) and 35,205 PRE authors (97.3 %) on the one hand, and 89, 245 PRL articles
(93.4 %) and 92,436 PRL authors (78.7 %) on the other. The intersection of these two datasets includes 16,207
authors (i.e., 92.8 % of the previous intersection).

We analyzed two types of interaction between APS authors: scientific collaborations and citations, with weights
defined as follows.

e Collaborations: two authors are connected if they co-authored at least one paper. The collaborative interaction
between author ¢ and author j is defined as in ﬂ2_1|, @], i.e. the undirected adjacency matrix element a;; is given

by
orst
ay = Y = i#] (A1)
pel P
Qg5 — O, (A2)

where the index p indicates an article in the dataset I, n, indicates the number of authors of article p and
6¥ =1 if node i is an author of article p, and 67 = 0 otherwise. The resulting network is undirected and without
self-loops.

e (litations: two authors are connected by a directed link if one author cites the other one. In this case, the
element a;; of the directed adjacency matrix indicating how many times node 7 cites node j is given by

Qi = Z 5f5§) bpyp/, (A3)

p,p'€l

where by, ,» = 1 if article p cites article p’, and b, ,» = 0 otherwise. Moreover ¢ is defined as above and indicates
whether ¢ is author of article p (67 = 1) or not (67 = 0). The resulting network is directed and with self-loops.

We constructed the following two duplex networks:

1. CoCo-PRL/PRE: collaborations among PRL and PRE authors The nodes of this multiplex network are the
authors who published articles both in PRL and PRE (i.e., 16,207 authors). These nodes are connected in layer
1 through weighted undirected links indicating the strength of their collaboration in PRL (i.e., co-authorship
of PRL articles). The same nodes are connected in layer 2 through weighted undirected links indicating the
strength of their collaborations in PRE (i.e., co-authorship of PRE articles).
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TABLE I: Total overlap and total weighted overlap in the CoCo-PRL/PRE and CoCi-PRE multiplex networks.

Dataset Layer Total overlap % Total weighted overlap %
CoCo-PRL/PRE PRL 35.75 28.35
CoCo-PRL/PRE PRE 39.10 33.84

CoCi-PRE coll 39.51 14.24

CoCi-PRE cit 12.64 20.76

2. CoCi-PRE: collaborations among PRE authors and citations to PRE articles The nodes of this multiplex
network are the authors of articles published in PRE ((i.e., 35,205 authors). These nodes are connected in layer
1 through weighted undirected links indicating the strength of their collaboration in PRE (i.e., co-authorship of
PRE articles). The same nodes are connected in layer 2 through weighted directed links indicating how many
times an author (with articles in PRE) cited another author’s work, where citations are limited to those made
to PRE articles.

2. Total overlap and total weighted overlap of the multiplex networks

In /order to characterize the overlap existing between the links of the multiplex networks, we define the total overlap
O** between layer a and layer o’ as the total number of pair of nodes (7, j) connected both in layer @ and in layer
o ie.

0% =3 0(a)0(as ), (A4)
1<j
where 0(z) =1 if z > 1 and 0(x) = 0 otherwise. This definition can be extended to weighted multiplex networks by
defining the total weighted overlap O’ hetween layer o and layer o/ as

o Otl
O(w),a,o/ — Zmln ( wij wij ) (A5)
wa wa/ )
7«<J max max
where w2 . is the maximal weight in layer . Table[[lreports details on the total overlap and total weighted overlap,

and indeed shows that our multiplex networks are characterized by a significant overlap of links.

3. Degree and multidegree distribution of the two multiplex networks

The nodes i = 1,2..., N of the multiplex networks have degrees k! in layer 1 and k? in layer 2. Moreover, we can
define the multidegree k] of a generic node ¢ as the sum of the multilinks 77 incident on it. We observe that, since
we always have

K =(N-1)= >k, (A6)
A0

we can therefore restrict the analysis to multidegrees m # 0. Figures [ and [6] show that the degree and multidegree
for both the CoCo-PRL/PRE and the CoCi-PRE multiplex network are broadly distributed. In particular, we fitted
the distributions with a power law and obtained exponents v indicated in Tables [[1] and [[TIl Moreover, in both
duplex networks, the degrees each author has in the two layers are positively correlated, as indicated by the Pearson
correlation coefficient between degrees (See Tables [[V] [V]). Finally, also multidegrees in the multiplex networks are
correlated, as indicated by their Pearson coefficients (See Tables /1] [VIT]).



100 E T T TTTT T T T TTTT T T TTT E
10 .. 4
< 10k o, 4
o E - E
g af “, 3
o 10 E .’:* . =
F LN 3
10 T -
'5: | | [ \:
10 Ll L Lol
10’ 10" 10° 10°
kPRL
0
lO E TTTTT T T T TrTrTT L \\\E
- ay
= c i L0y 73
£ LoF . 7
- 10 25 i =
g E 3
= _aF - 7]
g 10F °, E
% g PR :
10’4? oo moca -
’5: | | [ \:
lo Ll L Lol
10’ 10' 10° 10°
k(ml' mz)

FIG. 5: The degree distributions and the

nents in Tab. [I

PPRE(k)

PPRE(k(mr mz))

11

multidegree distributions in the CoCo-PRL/PRE multiplex network.

T T T T T1T1T T T T TTTT T T T T1TT E

-, 3

-P.."' ;

o E

Il Il | ‘ Il | | \‘ Il I \:
10' 10° 10°

kPRE

T T TTT T T T T 17T T T 17T T E

CEVI

: (01 3

..’.' é

Il | ‘ Il | | \‘ Il I \:
10" 10° 10°

Related expo-

w0t ERE (S
i ] ., ] 5 \\ ]
=2 =2
z F g 12 Ea
° [ 1= 1 =35 [ il
a 10°¢ \% 3 2 427107 3
: % ; ; ? ? % ;
-4 - —4| o
10 E ool 3 S ———. 3 10 E —e 3
g - ] _ i —_
10 Ll Ll Ll Ll 10 Ll Ll Ll
10 10° 10° 10' 10° 10’ 100 4 10 10°
kcoll kout
10 o e ey I AT e
F . . ,1), In3 . ,1), outy
ik © @y E CEV 10*1E 01 |
— (1.1), out 3 1 ~ g %
EN 2 @Lo)in 1 & 1 5 " ]
e % C @0 out £ , 1o P ™,
< f 1 AR B X ] 2 460 X ]
s 10°¢ X E 4 .o%510 kS 3
I : kA E 1 %° ", ]
—4 s ~4| Livdd
10 sl E o T 3 10 i 3
75: S ¢ b E E - E
10 Ll Ll Ll Ll lo Ll Ll Ll
10 10° 10° 10" 10° 10° 10° 10" 10° 10°
k(ml' mz) k(ml' mz) kg:]%’ mz)

FIG. 6: The degree distributions and the multidegree distributions in the CoCi-PRE multiplex network. Related exponents in

Tab. [



12

TABLE II: Fitted power-law exponents v £ A~ of the degree and multidegree distributions in the CoCo-PRL/PRE multiplex
network.

P(k1) P(k2)||P(k11) P(kio) P(ko1)

v 1250 2621 290 251 2.64

Avy| 0.14 0.16 || 0.30 0.13  0.17

TABLE III: Fitted power-law exponents v £ Ay of the degree and multidegree distributions in the CoCi-PRE multiplex
network.

P(ki) P(k3") P(kS™)| P(kiT) P(k{T") P(kis) P(ki5") P(kot) P(kGi")

v | 263 1.89 2.15 2.58 2.57 3.02 2.99 1.89 2.18

Avy| 0.14 0.06 0.07 0.20 0.17 0.23 0.21 0.06 0.07

TABLE IV: Pearson coefficients p measuring the correlations between the degrees in the different layers and the strengths in
the different layers in the CoCi-PRE multiplex network.

in out

p ki kYRS p o os1 sy 83

ki 1 0.700.79| s1 1 0.80 0.88

E® 070 1 0.71 s 0.80 1 0.80

kst 0.79 0.71 1 |ls3“* 0.88 0.80 1

TABLE V: Pearson coefficients p measuring the correlations between the degrees in the different layers and the strengths in
the different layers in the CoCo-PRL/PRE multiplex network.

p ki k2 ||p s1 s

kl 1 074 S1 1 065

ko 0.74 1 ||s2 0.65 1

4. Weighted network properties of single layers

Here we report the weighted network properties of the single layers of our multiplex networks. In general, the
average strength sgof nodes with degree k in layer o and the average inverse participation ratio Y of nodes with
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TABLE VI: Pearson coefficients p measuring the correlations between multidegrees in the CoCi-PRE multiplex network.

in out in out in out
p kit k1" ki k16T kot kor

K1 0.93 0.36 0.52 0.71 0.72

k91t 093 1 0.46 0.45 0.67 0.75

k% 0.36 0.46 1 0.90 0.32 0.48

kg 0.52 0.45 0.90 1 0.43 0.51

ki 0.71 0.67 0.32 043 1 0.65

kvt 0.72 0.75 0.48 0.51 0.65 1

TABLE VII: Pearson coefficients p measuring the correlations between multidegrees in the CoCo-PRL/PRE multiplex network.

P ki1 ko koi

ki1 1 041 0.46

kio 0.41 1 0.53

ko1 0.46 0.53 1

degree k in layer o are described by the functional behavior

5¢ o< kPe

o 1
As shown by Figure [0, the CoCo-PRL/PRE multiplex network is characterized by a linear behavior of average
strength as a function of the degree of nodes, i.e. 51 = 0.96 = 0.04, 83 = 1.01 4+ 0.05, where the first layer indicates
the PRL collaboration network and the second layer the PRFE collaboration network. The exponents A\, in the
CoCo-PRL/PRE multiplex network are given by A\; = 0.84 + 0.03 and A2 = 0.80 £ 0.05. Figure [ shows that the
CoCi-PRE multiplex network is characterized by a linear behavior of average strength as a function of the degree
of nodes in the collaboration network (57 = 1.03 & 0.04), and by a super-linear behavior in the citation network,
ie. A" = 1.1340.02, 39** = 1.14 £ 0.03, where the first layer indicates the PRE collaboration network and the
second layer the directed citation network. The exponents A\, in the CoCi-PRE multiplex network are given by
A1 = 0.79 4 0.04 and \§* = 0.72 4 0.03, A%t = 0.70 & 0.04.

5. Statistical analysis of the properties of multilinks in the CoCo-PRL/PRE multiplex network

In this subsection we discuss in detail the results of our statistical analysis of the properties of multilinks in the
CoCo-PRL/PRE multiplex network. In particular, we focus on the average multistrength of nodes with a given

multidegree, i.e (k™) = <szﬁ’o‘5 (kI km)>, and the average inverse multiparticipation ratio of nodes with a given
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FIG. 7: Average strength versus degree and average inverse participation ratio in the two layers of the CoCo-PRL/PRE
multiplex network. The average strengths and the average inverse participation ratio follow the functional form described by

Eq. (AD).

multidegree, Y (k™) = <Yi7ﬁ’a6(kﬁ, kﬁ)> These quantities are expected to scale as
Sm,a(krﬁ) _ eqﬁl’a(kﬁl),@m,a

1

(b

3

Yo (g = e (A8)

with exponents 3. > 1 and Ay o < 1. In what follows, we will label the PRL collaboration layer as a = 1 and the
PRE collaboration layer as o« = 2 .

a. Statistical analysis of the average multistrengths in the CoCo-PRL/PRE multiplex network

In the CoCo-PRL/PRE multiplex network (see Fig. 2 in the main text), the fitted exponents S, 1 for multilinks
m = (1,1) and m = (1,0) are not significantly different (3(; 1y, = 1.06 £ 0.09, B(10)1 = 0.97 £ 0.03). Moreover,
also the fitted proportionality constants in Eq. (A8) are not significantly different, with values qa,n,1 = —0.51+£0.26
and q(1,0),1 = —0.78 & 0.10. However, we can perform a paired samples Student’s t-test to show how the average

multistrength per fixed multidegree s (k™) is significantly higher for multilinks (1,1) than multilinks (1,0). We
have identified pairs of average multistrength s(11 (k1) and 52170),1(]{(1,0))7 corresponding to the same multidegree
value k(1Y) = k(1.0) = k. The paired samples Student’s t-test returns a test decision for the null hypothesis that the
values log (s(l’l)’l(k)/s(l’o)’l(k)) come from a normal distribution with mean zero and variance from the data. In our
case, the null hypothesis is rejected with a p-value equal to 2.90 - 1071°. Furthermore, (log (s(11(k)/s(19:1(k)))

is equal to 0.53. This analysis suggests that for a particular value of degree k the related 3(1’1)’1(k) is higher than
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FIG. 8: Average strength and average inverse participation ratio versus degree in the two layers of the CoCi-PRE multiplex
network. Average strength and average inverse participation ratio follow the functional form described by Eq. (AT).

s(LO:1(k) and the two average multistrengths satisfy the relation s(M11 (k) ~ ¢9935(10)1(E). Similar results were
obtained in the case of the multistrengths on the second layer indicating the collaboration network on PRE articles.
The null hypothesis is rejected with a p-value equal to 8.98 - 10~1° and <10g (s(l’l)’g(k)/s(o’l)’Q(k))> is equal to 0.57.

b. Statistical analysis of the average inverse multiparticipation ratio in the CoCo-PRL/PRE multiplex network

In the PRL layer the fitted exponents A , are significantly different and their values are A 1)1 = 0.7440.05 and
A(1,0),1 = 0.84£0.03. The weights regarding multilinks (1, 1) are therefore distributed more heterogeneously than the
weights regarding multilinks (1,0). Similarly, in the PRE layer, the fitted exponents are A1), = 0.73 £ 0.06 and
A0,1),2 = 0.84 £0.05.

The paired Student’s t-test is also useful to understand the properties of the average inverse multiparticipation
ratio. In addition to the fitted exponents, we can perform a t-test as we did previously considering now Y™ (k™).
This test underlines how the inverse multiparticipation ratios regarding multilinks (1,1) are significantly higher than
those regarding multilinks (1,0) or (0,1). In the case Y (111(E) vs Y(10)1(E), the t-test gives a p-value equal to 0.002
and an average value (log (Y (11 (k) /Y (101 (k))) = 0.11. In the case Y112 vs Y(©1):2(k) the p-value is equal to
6.64-107°, and the average value is (log (Y (11):2(k) /Y (©1D-2(k))) = 0.19.

6. Statistical analysis of the properties of multilinks in the CoCi-PRE multiplex network

We analyzed the average multistrength of nodes with a given multidegree, i.e ™ (@n/out)(fri(in/out))
<S7_ﬁa0¢7(i”/OUt)6(kﬁ7(i”/0uﬂ kﬁi,(in/out))

4 >, and the average inverse multiparticipation ratio of nodes with a given mul-

tidegree, Y (in/out) (i (in/out)) — <Yiﬁ’a7(in/om)5(]“?7@”/0%), km"(i"/om))>, where a distinction was made between
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incoming and outgoing links in the citation layer. These quantities are expected to scale as

m,(in,out),1

Sﬁt,l,(in,out) (km,(in,out)) — el

(km in, out))ﬂm,l,(m,out)
)

7,2, (in/out) 2 (inJout)

Svﬁ,?,(in/aut)(kﬁ,(in/out)) — o (km (in/out

7,1, (in/out)

Yﬁz,l,(in/aut) (kﬁ,(in/out)) — P

m,2,(in/out)

Yrﬁ,2,(in/out) (kﬁi,(in/out)) — P

)i

1
(km,(zn/out ))\ 1,(in/out)

1

e (A9)

(km ,(in/out)

m,2, (7/7l/01l/t)

with exponents B o, (injout)y = 1 and Ag o, (injour) < 1. In what follows we will label the PRE collaboration layer as
a =1 and the PRF citation layer as a = 2.

a. The statistical analysis of the average multistrengths in the CoCi-PRE multiplex network

In the CoCi-PRE multiplex network (see Fig. 3 in the main text ) we can perform, at first, a statistical anal-
ysis of the multistrengths in the collaboration layer. The fitted exponents B(1 1) 1,in, B(1,1),1,0uts B(1,0),1,in and
B(l,O),l,outv are not signiﬁcantly different (ﬂ(l,l),l,in =1.03+ 004, ﬂ(l,l),l,out =1.054+0.04 ) ﬂ(l,o),l,in =0.98 £+ 005,
B(1,0),1,0ut = 0.97 £0.05). Conversely, the fitted intercepts of the log-log plot, regarding multilinks (1, 1), (in/out)
are significantly different from the intercept for multilinks (1,0), (in/out), namely, ¢(t1:5" = —0.41 + 0.15 and
gL Lin — 097 + 0.17, ¢gbDbout — _0.38 4+ 0.14 and ¢10bovt = —0.95 + 0.16. From a paired sam-
ples Student’s t-test, in the same way as we did for the average multistrengths in the CoCo-PRL/PRE multi-
plex network, we obtained that both s(t:1:1in(k) and s(11):Lout (k) are significantly higher than s(9:L (k) and
s(LO)Lout (k) - In the case s(MD1in (k) vs s(10:Lin(k) we have a p-value equal to 4.86 - 10732 and an average
value (log (s(D:bin () /s(10:Lin(k))) = 0.72. In the case s(bD:bovt(k) vs s(0-Lovt (k) we have a p-value equal
to 9.93 - 1073 and an average value (log (s(1:1):1eut(f) /s(1.0)Lout(k))) = 0.80. Based on the fitted parameters and
the Student’s t-test, the data suggest that both the multidegree for multilinks (1,1) and multilinks (1,0) have a
linear relation with their own multistrengths in the collaboration layer, and that multistrengths (1,1) are related to
multistrengths (1,0) by a multiplicative constant.

In the citation layer, the fitted exponents indicate a super-linear scaling and are significantly different. For the
in-citations, we have B(1,1)2,im = 1.30 £ 0.07 and B(g,1)2,im = 1.11 £ 0.01. The intercepts are g2 = 0.47 £ 0.25
and ¢(®1:2m = —0.01 £ 0.07. For the out-citations, we have B(1,1) 20w = 1.32 £ 0.08 and B(g,1)2,0u¢ = 1.10 £ 0.02.
The intercepts are ¢(1:1):2:04t = (.45 + 0.26 and ¢(*-1):2:°4t = (.06 + 0.09.

b. The statistical analysis of the multi inverse participation ratio in the CoCi-PRE multiplex network

In the collaboration layer the fitted exponents are A1 1)1,in = 0.80 £ 0.06, A(1,1),1,0ut = 0.77 £0.05, A(1,0),1,in =
0.88 £0.03 and A(1,0y,1,0ut = 0.90 £ 0.02 (the confidence intervals of the fitted exponents A1 1),1,0ut and A(1,0),1,0ut
do not overlap for a narrow window). Performing the t-test as usual, we found that the inverse multipartic-
ipation ratio for multilinks (1,1) is always larger than the inverse multiparticipation ratio for multilinks (1,0).
In the case Y(LD1in (k) v Y(1L0LLin (k) the t-test gives a p-value equal to 5.73 - 107! and an average value
(log (Y11 Lin (k) )y (1.0) 1m(k))> = 0.48. In the case Y (LD):Lout yg y (1,0).Lout (1) the p-value is equal to 5.48-10~1°
and the average value is (log (Y (11 heut (k) /y (1O Lout (o)) )y — 0.33.

In the in— and out—citation layers, the fitted exponents A 2 (injour) Tegarding multilinks (1,1) are not sig-
nificantly different from those regarding multilinks (0,1) (A(1,1),2,in = 0.73 £ 0.05, A\(g,1),2,in = 0.74 £ 0.04 and
A(1,1),2,0ut = 0.75 £0.05, X\(0,1),2,0ut = 0.69 = 0.05 ). Nevertheless, the paired Student’s t-test shows how the inverse
multiparticipation ratio for multilinks (1,1) is always larger than the inverse multiparticipation ratio for multilinks
(0,1). In the case Y12 (k) vs V(012 (k) the t-test gives a p-value equal to 7.60 - 1072" and an average
value (log (Y (1:1):2in (k) /Y (012 (k))) = 0.34. In the case Y(LD:2out(k) vs Y(O:D):20ut (k) the p-value is equal to
1.12- 10715 and the average value is (log (Y (1D):2.0ut(f) /y (0.1 Z.out (k))) = 0.34.
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Appendix B: Weighted Multiplex Ensembles

1. Definition

A weighted multiplex network is formed by N nodes connected within M weighted networks G, = (V, E, ), with
a=1,...,M and |V| = N.Therefore we can represent a multiplex network as G = (G1,Ga,...,Gq,...Gyr). Each
network G, is fully described by the adjacency matrix of elements af;, with af, = wg: > 0 if there is a link of weight

w;; between nodes ¢ and j in layer a, and af; = 0 otherwise. In what follows, in order to simplify the treatment of the
weighted multiplex networks, we w111 assume that the weight of the link between any pair of nodes (4, j), ag; = wi,
can only take integer values. This is not a major limitation because in a large number of weighted multiplex networks
the weights of the links can be considered as multiples of a minimal weight.

2. Canonical weighted multiplex ensembles or exponential weighted multiplex ensembles

The canonical network ensembles (also known as exponential random graphs) are a very powerful tool for buildin
null models of networks @@] Here we generalize the formalism developed for unweighted multiplex ensembles @g]
to take weighted multiplex ensembles into account.

The construction of the canonical weighted multiplex ensembles or exponential random multiplex follows closely
the derivation or the exponential random graphs. A weighted multiplex ensemble is defined once the probability P(é)
of any possible weighted multiplex is given. We can build a canonical multiplex ensemble by maximizing the entropy
S of the ensemble given by

Z P(G)log P(G), (B1)

under the condition that the soft constraints we want to impose are satisfied. We assume there are K of such
constraints determined by the conditions

Z P(G)F,(G) =Cy, (B2)
€
forp=1,2..., K, where F), (é) determines one of the structural constraints that we want to impose on the multiplex

network. Therefore the maximal-entropy multiplex ensemble satisfying the constraints given by Eqs. (B2) is the
solution of the following system of equations

B) at L .
— 2 15-Y w, S FGPG) - AS PG| =0, B3
3P ; XG: (G)P(G) XG: (@) (B3)

where the Lagrangian multiplier A enforces the normalization of the P(é) probability distribution, and the Lagrangian

multiplier w,, enforces the constraint . Therefore we obtain that the probability of a multiplex network P(é) in a
canonical multiplex ensemble is given by

P(G) == exp

Zwu

(B4)

where the normalization constant Z = exp(1+A) is called the “partition function” of the canonical multiplex ensemble
and is fixed by the normalization condition on P(G). Thus, Z is given by

Z=Zexp
el

(B5)

The values of the Lagrangian multipliers w,, are determined by imposing the constraints given by Eq. (B2) assuming
for the probability P(G) the structural form given by Eq. (B4). From the definition of the partition function Z and
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Eq. (B4), it can be easily shown that the Lagrangian multipliers w, can be expressed as the solutions of the following
set of equations
dlog Z

C,=— Dy (B6)

In this ensemble, we can then relate the entropy S (given by Eq. (BI)) to the canonical partition function Z, and we
obtain

S = Zwucu—i—logZ. (B7)
w

We call the entropy S of the canonical multiplex ensemble the Shannon entropy of the ensemble.

3. Uncorrelated and correlated canonical multiplex ensembles

Multiplex ensembles can be distinguished between uncorrelated and correlated ones ﬂﬂ] For uncorrelated multiplex

ensembles, the probability of a multiplex network P(é) is factorizable into the probability P,(G,) of each single
network G, in layer «, i.e.

@:ﬁ B3)

Therefore, the entropy S of any uncorrelated multiplex ensemble given by Eq. (BI) with P(G) given by Eq. (BR) is
additive in the number of layers, i.e.

M M
=) S, = Z o) log Py (Gy). (B9)

For a canonical uncorrelated multiplex ensemble, P(G) has to satisfy both Eq. (BS) and Eq. (B). Therefore, in

order to have an uncorrelated multiplex ensemble, the functions F), (é) should be equal to a linear combination of
constraints f, o(Ga) on the networks G, in a single layer a, i.e.,

M
Fu(@) = 3" fualGa). (B10)

A special case of this type of constraints is given when each constraint depends on a single network GG, in layer a. An
example of this type of constraints will be discussed in the following subsection where we will focus on the important
case in which the constraints are the strength sequence {s¢} in any layer «, and the degree sequence {k{*} in any
layer a.

Moroever, we can define the marginal probability for a specific value of the element af;

1] ZP é z;v )a (Bll)

where §(z,y) stands for the Kronecker delta. The rnargmal probabilities 7% (ag;) sum up to one
> mijlagy) =1. (B12)
We can also calculate the average weight (ag;) of links between nodes 7 and j as
ZP (Gagy = Y afmij(as) (B13)

In layer « a link between two nodes 7 and j exists with probability p;, related with all the possible weights different
from zero
P =Y PG)o(ag) = > wii(as). (B14)
el

af‘j #0
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4. Multiplex ensemble with given expected strength sequence and degree sequence in each layer

Here we consider the relevant example of the uncorrelated multiplex ensemble in which we fix the expected strength
s and the expected degree kf* of every node 7 in each layer a. We have K = M - 2N constraints in the system. These
constraints are given by

ZFm GPEG) =Yg (X,ua5) PO =
ZFw (G)P(G) =g (Zm (a)) P(G) = kg, (B15)

with o = 1,2,..., M. We introduce the Lagrangian multipliers w; , for the first set of N - M constraints and the

Lagrangian multipliers w; , for the second set of N - M constraints. Therefore, the probability P(é) of a multiplex
network in this ensemble, in general given by Eq. (B4), in this specific example is given by

N
P(G) = —exp —ZZwlazaU Zzwi,aze(a%) ,

a=1i=1 i a=1i=1 G

where the partition function Z can be expressed explicitly as

M N
2= Son [ 8555 o+t
¢ a=1i=1 j7#i
r e~ (Wiatwja)=(wi,atwj,a)
- (};[1111 (1 * 1— 6_(wi,a+w]‘Ya) ) ) (B16)

and the Lagrangian multipliers are fixed by the conditions Eqs. (BI3). From Eq. (BII) we write the marginal
probabilities 7§} (af;) for this specific ensemble that are given by

e (Wi 05,008~ (i0+05,0)0(05) (1 _ g=(ws0+05.0))

Tij (aij) = 1+ e*(wi,aerj,a)(e*(wz’,aerj,a) — 1) (B17)
The average weight of the link (4, 7) in layer a, i.e. <a%>, is given by Eq. (BI3) that in this case reads
o e*(wi,aerj,a)Jr(wi,aerj,a)
<aij> o (ewi,a"l‘wj,a — 1)(6—(wi,a+wj,a) + eWiatWja — 1) (Bls)

Moreover, from Eq. (BI4) the probability pf; that the link (i, 7) in layer o has weight different from zero is given
by

e~ (Wi atwja)

R . B19
Pij 6_(Wi,o¢+wj,o<) + eWiaTWja _ ( )

Finally, the probability of a multiplex network G in this ensemble, characterized by the M adjacency matrices a®, is
given by

PG =1] Hmj(ag;), (B20)

with the marginals 7¢;(af;) given by Eq. (BI1)
Therefore the entropy S of this canonical multiplex ensemble is given by

ZZ Z ij) log(mij (ag)), (B21)

a=11i<yj a"‘—

with the marginals 75 (ag;) given by Eqs. (B17).
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5. Multiplex ensemble with given expected multidegree sequence and given expected multistrength
sequence

Here we consider the example of the correlated weighted multiplex ensemble, in which we fix the expected multide-
grees k" of node 4, for each node i = 1,..., N, for each 1. Moreover, in addition to these constraints we impose also

a given expected strength s;ﬁ’o‘ for each node i = 1,2,..., N and each multilink 7, in each layer a where m, = 1.
The number of constraints is therefore K = 2M . N 4+ (2M=1). M - N. In particular, the constraints we are imposing
are

me (GPE) =Yg (X, A%) PG = kT (B22)
Z FLAPE) =Yg (Typ Alas ) PG) = T, (B23)
where we have now used the multiadjacency matrices A:’? with elements given by

H {9 Qi Jma +[1— o(az])](l - ma)} . (B24)

Here we introduce the Lagrangian multipliers w!™ for the first set of constraints and the Lagrangian multipliers wﬁa

for the second set of constraints. Without loss of generality, if m, = 0 we set w™ = 1/2. We can do this because
the probability of a multiplex network does not depend on any of these values, and we need to define this Lagrangian
multipliers only for simplifying the notation. Using these expression for the Lagrangian multipliers, we obtain the
following expression for the probability P(é) of the multiplex network in the ensembles

[ N
P(@) = Zew _Zzz<w;ﬁAm+zwmAg )

moi=1 j#i

. %exp S W WA ZZZ W, +wh ) AR | (B25)

i<j m i<j m a=l1

The partition function Z can be expressed explicitly as
z = 1] 2 (B26)
i<j

where Z;; is given by

. ot \"™
Zij:Ze W] )H<1_e o )) ) (B27)

Finally, the Lagrangian multipliers are fixed by the conditions given by Eqs. (B23)

We now indicate with @;; the vector (a}j, afj, Y TR ai‘f). The probability of a multiplex network P(é) can
be rewritten as

G) =[] i (@), (B28)
i<j
where the probability of a specific multiweight @;; in between nodes (i, 7) is
eIl DL (el e )

() = , B29
ﬂ-J(aJ) Zij ( )

where m = (my,...,m%

d,...,mi) withmi = 0(ag;). We note here that m;;(d;;) satisfies the following normalization
condition:

> i) = 1. (B30)

Qjj
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The average weight <a;?‘j AZ1> of multilink 7 between nodes (i and j in layer a and the probability p?} of multilink m
between nodes ¢ and j are given by

— (Wl +w) 1 M —(wﬁ;-ﬁ-w%) ms
2 € 7 e J
<a/z] z]> Zi (1 . e_(wz?a_,_w;r’ma)) ﬁlzll (1 _ e_(wztlﬁ_;’_w;?,lﬁ) ) ( )
o e ) ﬁ (Wi Awl)  \ "
pij - Zz . 1 7(wfa+wfa)

a=1

(B32)

— €

Finally, since the probability of a multiplex network P(G) is given by Eq. (B28), the entropy S defined in Eq. (BI)
in this ensemble is given by

S == icj 2, Tij(dij) log mij (dij). (B33)

Appendix C: Background information on Figure 4 of the main text

As an example of a possible application of the indicators ¥ and =, we analyzed a case inspired by the CoCi-PRE
multiplex network. Due to the numerical limitations of the programs that are able to evaluate the entropy of multiplex
ensembles, we performed a finite-size analysis of the indicators ¥ and = as a function of the size of the multiplex
network N = 128,256, ...,2048. In particular, we considered the following undirected multiplex ensembles:

o Correlated weighted multiplex ensemble. First, we created the correlated multiplex ensemble with power-law
multidegree distributions with exponents (1™2) = 2.6 for my = 0,1 and 7%V = 1.9 (for multidegree (0,1)
we imposed a structural cut-off). In particular, in order to avoid the effects of fluctuations in the multidegree
sequence, we ranked the multidegrees as » = 1,2,... N and taken the degree sequence in which the multidegree
k™ of rank 7 is defined by

r K a a
N:/kgl P(E™)dk™, (C1)

where we have taken the maximal cut-off K = N for 4™ > 2 and K = /(k™) N for y™ < 2. Moreover,
multistrengths were assumed to satisfy

ST = e (KT Aea (C2)
with ¢, = 1 and f7m2)1 = 1, for my = 0,1; 012 = 1.3, pO1:2 = 1.1,

o Uncorrelated weighted multiplex ensemble. In this ensemble, we set the expected degree k{* of every node ¢
in every layer @« = 1,2 to be equal to the sum of the multidegrees (with m, = 1) in the correlated weighted
multiplex ensemble. Moreover, we set the expected strengths s{* of every node ¢ in every layer o to be equal to
the sum of the multistrengths of node 7 in layer « in the correlated weighted multiplex ensemble.

We measured the indicator ¥ that compares the entropy of a weighted multiplex ensemble & with the entropy of a
weighted multiplex ensemble in which weights are distributed homogeneously. Therefore, ¥ can be defined as

IS = (S)r(w)l
((68)*) ey

where the average (...)r () is calculated over multiplex networks with the same structural properties but with weights
distributed homogeneously. In particular, when the weight distribution is randomized, the multiplex networks are
constrained in such a way that each link must have a minimal weight (i.e. w;; > 1), while the remaining of the total
weight is distributed randomly across links. When numerically evaluating (.. .>ﬂ(w), we obtained the average over 100
weight randomizations. The distribution P(S) of the entropy S calculated over these randomizations, both for the
uncorrelated weighted multiplex ensemble and for the correlated weighted multiplex ensemble, is shown in Figure
In both cases, we observe a distribution that can be fitted by a Gaussian function with mean and variance scaling as
(S) x Nlog N and <(58)2>F(w) o /N (See Figure [[0). We call ¥¢°'" the indicator ¥ calculated on the correlated

multiplex ensemble and indicate with W the indicator ¥ calculated on the corresponding uncorrelated multiplex

U= (C3)
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FIG. 9: The P(S) distribution in the null models for correlated and uncorrelated multiplex ensembles in which the weights are
distributed uniformly over the links of the multiplex network. The P(S) distributions are calculated over 100 randomizations
of the weights for multiplex networks of N = 1024 and N = 2048 nodes.

ensemble. Finally, to quantify the additional amount of information carried by the correlated multiplex ensemble with
respect to the uncorrelated multiplex ensemble, we measured the indicator = as

_ (C4)

\puncorr '

(1]

The finite-size scaling of We™" W™ and = are shown in Figure 4 in the manuscript.
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FIG. 10: The mean (S) and variance og as a function of the system size N for the null models of correlated and uncorrelated
multiplex ensembles in which the weights are distributed uniformly over the links of the multiplex network. The solid lines

indicate the fit of the data in which we assume (S) = aNlog N and os5 = b/ N.



