15 research outputs found

    Lovastatin, but not orlistat, reduces intestinal polyp volume in an Apc(Min/+) mouse model

    Get PDF
    The statins, inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCoAR) and orlistat, an inhibitor of fatty acid synthase (FAS), inhibit tumor cell growth by restricting cholesterol and fatty acid synthesis, respectively. We previously demonstrated that an omega (ω)-3 polyunsaturated fatty acid (PUFA)- or olive oil-enriched diet reduced the polyp number and volume in ApcMin/+ mice. This phenomenon was associated with a significant inhibition of FAS and HMGCoAR, as well as an increase in the estrogen receptor (ER)β/α ratio. Herein, we evaluated the effect of lovastatin and orlistat on polyp development and ER expression in ApcMin/+ mice, in order to confirm previous data obtained with ω-3-PUFAs and olive oil. As expected, the use of lovastatin and orlistat significantly reduced HMGCoAR and FAS enzymatic activities and gene expression in colonic tissues, but did not affect the number of intestinal polyps, while there was a statistically significant reduction in polyp volume only in the mouse group treated with lovastatin. In the mice receiving orlistat, we observed a significant increase in cell proliferation in the polyp tissue, as well as enhanced expression of ERα. Moreover, the overexpression of ERα was associated with a statistically significant increase in PES1, Shh and Gli1 protein levels, considered ERα-related molecular targets

    Label-Free Intracellular Multi-Specificity in Yeast Cells by Phase-Contrast Tomographic Flow Cytometry

    Get PDF
    : In-flow phase-contrast tomography provides a 3D refractive index of label-free cells in cytometry systems. Its major limitation, as with any quantitative phase imaging approach, is the lack of specificity compared to fluorescence microscopy, thus restraining its huge potentialities in single-cell analysis and diagnostics. Remarkable results in introducing specificity are obtained through artificial intelligence (AI), but only for adherent cells. However, accessing the 3D fluorescence ground truth and obtaining accurate voxel-level co-registration of image pairs for AI training is not viable for high-throughput cytometry. The recent statistical inference approach is a significant step forward for label-free specificity but remains limited to cells' nuclei. Here, a generalized computational strategy based on a self-consistent statistical inference to achieve intracellular multi-specificity is shown. Various subcellular compartments (i.e., nuclei, cytoplasmic vacuoles, the peri-vacuolar membrane area, cytoplasm, vacuole-nucleus contact site) can be identified and characterized quantitatively at different phases of the cells life cycle by using yeast cells as a biological model. Moreover, for the first time, virtual reality is introduced for handling the information content of multi-specificity in single cells. Full fruition is proofed for exploring and interacting with 3D quantitative biophysical parameters of the identified compartments on demand, thus opening the route to a metaverse for 3D microscopy

    Superinfections caused by carbapenem-resistant Enterobacterales in hospitalized patients with COVID-19: a multicentre observational study from Italy (CREVID Study)

    Get PDF
    Objectives To describe clinical characteristics and outcomes of COVID-19 patients who developed secondary infections due to carbapenem-resistant Enterobacterales (CRE). Methods Retrospective observational study including COVID-19 patients admitted to 12 Italian hospitals from March to December 2020 who developed a superinfection by CRE. Superinfection was defined as the occurrence of documented bacterial infection >48 h from admission. Patients with polymicrobial infections were excluded. Demographic, clinical characteristics and outcome were collected. Isolates were classified as KPC, metallo-beta-lactamase (MBL) and OXA-48-producing CRE. A Cox regression analysis was performed to identify factors independently associated with 30 day mortality. Results Overall, 123 patients (median age 66 years, IQR 59-75) were included. The majority of infections occurred in the ICU (81, 65.9%), while 42 (34.1%) in medical wards. The most common types of infection were bloodstream infections (BSI) (n = 64, 52%), followed by urinary-tract infections (UTI) (n = 28, 22.8%), hospital-acquired/ventilator-associated pneumonia (HAP/VAP) (n = 28, 22.8%), intra-abdominal infections (n = 2, 1.6%) and skin infections (n = 1, 0.8%). Sixty-three (51.2%) infections were caused by KPC-, 54 (43.9%) by MBL-, and 6 (4.8%) by OXA-48-producing CRE. Thirty-day mortality was 33.3% (41/123). On Cox regression analysis, HAP/VAP compared with UTI (HR 7.23, 95% CI 2.09-24.97, P = 0.004), BSI compared with UTI (HR 3.96, 95% CI, 1.33-11.77, P = 0.004), lymphopenia on admission (HR 3, 95% CI 1.44-6.26, P = 0.003) and age (HR 1.05, 95% CI 1.02-1.08, P = 0.002) were predictors of 30 day mortality. Conclusions Superinfections by CRE were associated with high risk of 30 day mortality in patients with COVID-19. HAP/VAP was the strongest predictor of death in these patients

    The Increase of miR-195-5p Reduces Intestinal Permeability in Ulcerative Colitis, Modulating Tight Junctions’ Expression

    No full text
    Defects in the intestinal epithelial barrier functions characterize inflammatory conditions such as Inflammatory Bowel Disease (IBD). Overexpression of pro-inflammatory cytokines such as TNF-α, IL-1B, IL-6 and INF-γ trigger epithelial damage. These cytokines are due to upregulation of claudin-2 (CLDN2) that form a pore channel, resulting in redistribution of TJs and an alteration of barrier permeability. Recently, we demonstrated that miR-195-5p is able to regulate CLDN2 and indirectly also CLDN1 in intestinal epithelial cells. Now, we aimed to investigate the modulation of miR-195-5p on the expression of CLDN2 and other TJs under inflammatory conditions induced by TNF-α. We demonstrated that miR-195-5p also modulated the expression of CLDN2 levels after stimulation with TNF-α. In addition, we discovered the role of miR-195-5p in the integrity of the intestinal barrier and in promoting the restoration of the intestinal epithelial. Moreover, we established that replacement of miR-195-5p attenuated the colonic inflammatory response in DSS-induced, colitis and it reduced colonic permeability. In conclusion, our data revealed the role of miR-195-5p in intestinal inflammation in ulcerative colitis, suggesting a potential pharmacological target for new therapeutic approaches

    <i>Lactobacillus rhamnosus</i> GG Protects the Epithelial Barrier of Wistar Rats from the Pepsin-Trypsin-Digested Gliadin (PTG)-Induced Enteropathy

    No full text
    Celiac disease (CD) is a chronic immune-mediated disorder, characterized by enhanced paracellular permeability across the intestinal epithelium. The complex system of intercellular junctions, including tight junctions (TJs) and adherens junctions (AJs), seals together the epithelial cells to form a continuous layer. The improvements in barrier integrity have been related to modifications in intercellular junction protein expression. Polyamines (spermidine, spermine, and putrescine) actively participate in the modulation of the AJ expression. Both in vitro and in vivo studies have demonstrated that also probiotics can promote the integrity and the function of the intestinal barrier. On these bases, the present work investigated the protective effects exerted by Lactobacillus rhamnosus GG (L.GG) against the pepsin-trypsin-digested gliadin (PTG)-induced enteropathy in jejunal tissue samples of Wistar rats. In particular, the probiotic effects have been evaluated on the intestinal mucosal architecture, polyamine metabolism and intercellular junction protein expression (ZO-1, Occludin, Claudin-1, &#946;-catenin and E-cadherin). The results from this study indicate that L.GG protects the intestinal mucosa of rats from PTG-induced damage, by preventing the reduction of the expression of the intercellular junction proteins. Consequently, a role for L.GG in the therapeutic management of the gluten-related disorders in humans could be hypothesized

    Quercetin Administration Suppresses the Cytokine Storm in Myeloid and Plasmacytoid Dendritic Cells

    Get PDF
    Dendritic cells (DCs) can be divided by lineage into myeloid dendritic cells (mDCs) and plasmacytoid dendritic cells (pDCs). They both are present in mucosal tissues and regulate the immune response by secreting chemokines and cytokines. Inflammatory bowel diseases (IBDs) are characterized by a leaky intestinal barrier and the consequent translocation of bacterial lipopolysaccharide (LPS) to the basolateral side. This results in DCs activation, but the response of pDCs is still poorly characterized. In the present study, we compared mDCs and pDCs responses to LPS administration. We present a broad panel of DCs secreted factors, including cytokines, chemokines, and growth factors. Our recent studies demonstrated the anti-inflammatory effects of quercetin administration, but to date, there is no evidence about quercetin's effects on pDCs. The results of the present study demonstrate that pDCs can respond to LPS and that quercetin exposure modulates soluble factors release through the same molecular pathway used by mDCs (Slpi, Hmox1, and AP-1)

    Phenotypic and functional characterization of Glioblastoma cancer stem cells identified through 5-aminolevulinic acid-assisted surgery [corrected]

    No full text
    5-aminolevulinic acid (5-ALA) introduction in the surgical management of Glioblastoma (GBM) enables the intra-operatively identification of cancer cells in the mass by means of fluorescence. Here, we analyzed the phenotype of GBM cells isolated from distinct tumour areas determined by 5-ALA (tumour core, 5-ALA intense and vague layers) and the potency of 5-ALA labelling in identifying GBM cells and cancer stem cells (CSCs) in the mass. 5-ALA identified distinct layers in the mass, with less differentiated cells residing in the core of the tumour. 5-ALA was able to stain up to 68.5 % of CD133(+) cells in the 5-ALA intense layer and, although 5-ALA(+) cells retrieved from different tumour areas contained a similar proportion of CD133(+) cells (range 27.5-35.6 %), those from the vague layer displayed the lowest ability to self-renew. In conclusion, our data demonstrate that a substantial amount of GBM cells and CSCs in the mass are able to avoid 5-ALA labelling and support the presence of heterogenic CSC populations in the GBM mass

    Polyphenol administration impairs T-cell proliferation by imprinting a distinct dendritic cell maturational profile

    No full text
    Currently little is known as to how nutritionally derived compounds may affect dendritic cell (DC) maturation and potentially prevent inappropriate inflammatory responses that are characteristic of chronic inflammatory syndromes. Previous observations have demonstrated that two polyphenols Quercetin and Piperine delivered through Reconstituted Oil Bodies (ROBs-QP) can influence DC maturation in response to LPS leading to a modulated inflammatory response. In the present study, we examined the molecular effects of ROBs-QP exposure on DC differentiation in mice and identified a unique molecular signature in response to LPS administration that potentially modulates DC maturation and activity in inflammatory conditions. Following LPS administration, ROBs-QP exposed DCs expressed an altered molecular profile as compared with control DCs, including cytokine and chemokine production, chemokine receptor repertoire and antigen presentation ability. In vivo ROBs-QP administration suppresses antigen specific T-cell division in the draining lymph nodes resulting from a reduced ability to create stable immunological synapse. Our data demonstrate that polyphenols exposure can drive DCs towards a new anti-inflammatory molecular profile capable of dampening the inflammatory response, highlighting their potential as complementary nutritional approaches in the treatment of chronic inflammatory syndromes. This article is protected by copyright. All rights reserved
    corecore