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Label-Free Intracellular Multi-Specificity in Yeast Cells by
Phase-Contrast Tomographic Flow Cytometry

Vittorio Bianco,* Massimo D’Agostino, Daniele Pirone, Giusy Giugliano, Nicola Mosca,
Maria Di Summa, Gianluca Scerra, Pasquale Memmolo, Lisa Miccio,* Tommaso Russo,
Ettore Stella, and Pietro Ferraro

In-flow phase-contrast tomography provides a 3D refractive index of label-free
cells in cytometry systems. Its major limitation, as with any quantitative phase
imaging approach, is the lack of specificity compared to fluorescence
microscopy, thus restraining its huge potentialities in single-cell analysis and
diagnostics. Remarkable results in introducing specificity are obtained
through artificial intelligence (AI), but only for adherent cells. However,
accessing the 3D fluorescence ground truth and obtaining accurate voxel-level
co-registration of image pairs for AI training is not viable for high-throughput
cytometry. The recent statistical inference approach is a significant step
forward for label-free specificity but remains limited to cells’ nuclei. Here, a
generalized computational strategy based on a self-consistent statistical
inference to achieve intracellular multi-specificity is shown. Various
subcellular compartments (i.e., nuclei, cytoplasmic vacuoles, the peri-vacuolar
membrane area, cytoplasm, vacuole-nucleus contact site) can be identified
and characterized quantitatively at different phases of the cells life cycle by
using yeast cells as a biological model. Moreover, for the first time, virtual
reality is introduced for handling the information content of multi-specificity
in single cells. Full fruition is proofed for exploring and interacting with 3D
quantitative biophysical parameters of the identified compartments on
demand, thus opening the route to a metaverse for 3D microscopy.

V. Bianco, D. Pirone, G. Giugliano, P. Memmolo, L. Miccio, P. Ferraro
CNR-ISASI
Institute of Applied Sciences and Intelligent Systems “E. Caianiello”
Via Campi Flegrei 34, Pozzuoli, Napoli 80078, Italy
E-mail: v.bianco@isasi.cnr.it; lisa.miccio@isasi.cnr.it
M. D’Agostino, G. Scerra, T. Russo
Department of Molecular Medicine and Medical Biotechnology
University of Naples “Federico II”
Via S. Pansini 5, Naples 80131, Italy
N. Mosca, M. Di Summa, E. Stella
Institute of Intelligent Industrial Technologies and Systems for Advanced
Manufacturing
National Research Council of Italy
Via Amendola 122/D-O, Bari 70125, Italy

The ORCID identification number(s) for the author(s) of this article
can be found under https://doi.org/10.1002/smtd.202300447

© 2023 The Authors. Small Methods published by Wiley-VCH GmbH.
This is an open access article under the terms of the Creative Commons
Attribution-NonCommercial License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited
and is not used for commercial purposes.

DOI: 10.1002/smtd.202300447

1. Introduction

Fluorescence imaging flow cytometry
(FIFC) is the current gold standard for
high-throughput single-cell analysis, di-
agnostics, and cell biology studies. FIFC
can analyze heterogeneous cell popula-
tions with statistical relevance while de-
scribing their intraspecies variability.[1]

FIFC relies on fluorescent markers that
bind to targeted molecules or func-
tional groups of them to localize sub-
cellular organelles. Such intracellular
multi-specificity is a powerful probing
tool to gather information on the cells’
structure, inner regulatory mechanisms,
life cycle, drug reaction, and external
cues.[1–3] However, using markers, dyes
or stains is emerging as a severe lim-
itation for the non-invasive observation
of cells. Fluorescent assays are sample
preparation-dependent, expensive, time-
consuming, and require prior knowledge
of the exogenous contrast agents. Above
all, cell labeling can lead to photobleach-
ing and phototoxicity.[3] In addition, in

FIFC the single-cell analysis is only qualitative, while unfortu-
nately cells’ biophysical properties cannot be measured from the
recorded images. Quantitative phase imaging (QPI) is a label-free
and quantitative alternative to fluorescence microscopy (FM).[4–6]

They aim to recover the quantitative phase-contrast map (QPM)
of the sample from one or more images captured by a light-
intensity sensor. In this framework, digital holography (DH)[7,8]

is one of the preferable solutions for microfluidic environments
thanks to its capability to image flowing samples out-of-focus in
the form of a modulated fringe pattern and to refocus them in
post-processing.[9] In a QPM, the cell’s inner contrast is endoge-
nous, and due to the phase delay introduced by the specimen
on the light probe, no dye is employed. However, in a 2D QPM,
the 3D cell’s morphology is coupled to the 3D cell’s refractive in-
dex (RI). Phase contrast tomography (PCT) retrieves the 3D vol-
umetric distribution of the cell’s RIs and its biophysical features
(e.g., dry mass) by combining several QPMs captured at differ-
ent viewing angles.[10,11] Two recording approaches are usually
adopted in PCT. In the former, cells are fixed at rest on a surface
and are recorded along several viewing directions by means of
an illumination scanning (IS) method.[5] This method excludes
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the possibility to analyze samples that naturally live in suspen-
sion (e.g., blood cells), and cannot be applied in FC conditions.
In the latter, cells are suspended and rotated by means of op-
tical or acoustic forces while they are illuminated along a fixed
beam direction.[12,13] Conversely, in-flow PCT[14] reconstructs 3D
RI tomograms of suspended cells in high-throughput microflu-
idic streams.[15] In-flow PCT exploits a controlled rotation of the
samples while they travel along the microfluidic channels to
probe them from different directions. Thus, PCT can work in FC
modality (hereafter named PCT-FC) without mechanical/optical
changes to the recording system.[14–17]

However, the advantages of PCT and PCT-FC are counter-
balanced by the lack of intracellular specificity. Since no dye is
employed, it is not trivial to recognize and isolate a certain or-
ganelle inside the cell from the dense distribution of RI values
of the 3D tomogram. Only in a few cases, RI thresholding iden-
tify structures from high-contrast tomograms of cells spread out
on a surface.[18–23] Virtual staining constitutes the first attempt
to bridge the intracellular specificity gap between fluorescence
microscopy and label-free microscopy. It has been demonstrated
for 2D QPMs of label-free tissues[24–26] and cells.[27,28] Then, it
was extended to the 3D case at the single-cell level.[29] Remark-
ably, several organelles (actin, plasma membrane, mitochondria,
nucleus, nucleoli) have been virtually stained in the same cell.[30]

Virtual staining is based on training a deep learning model by
pairs of co-registered 3D examples made of the label-free RI to-
mograms and the corresponding fluorescence tomograms with
the searched organelles appropriately marked. However, creating
a 3D dataset with a voxel-level mapping between the RI values
and the fluorescence information is not viable in PCT-FC due to
the recording of cells in the flow modality. So far, 3D virtual stain-
ing has been demonstrated only in the case of a PCT-IS config-
uration, thus lacking the high-throughput condition requested
by statistically significant biological studies. We have recently
demonstrated that the specificity gap can be filled in PCT-FC
while avoiding deep learning. In particular, we have proposed the
Computational Segmentation based on the statistical inference
(CSSI) strategy to segment the nucleus inside cancer cells.[31]

This statistical approach avoids the examples provided by a fluo-
rescence channel. Instead, the CSSI method recognizes the sta-
tistical similarities among groups of RI voxels within the tomo-
gram to cluster them as belonging or not to the searched volume.
The CSSI method works accurately in segmenting the cell nu-
cleus, starting from the hypothesis that it passes for the center
of the cell. Generalizing the algorithm to isolate other cellular
components/organelles with different RI distributions has never
been attempted so far. Another important open issue to be ad-
dressed is benchmarking the CSSI performance in the presence
of lower-quality tomograms. Since CSSI is based on statistical
tests on groups of voxels, its accuracy is in principle limited when
organelles too small with respect to the imaging spatial resolution
have to be isolated.[31] Here we demonstrate that the CSSI algo-
rithm can be effectively extended to furnish multiple-specificity at
the subcellular level in 3D tomograms of flowing label-free cells.
CSSI is applied to lower-resolution tomograms reconstructed us-
ing the less-demanding and much faster filtered back projec-
tion (FBP) method.[10] We prove the automatic and simultaneous
identification of different intracellular sub-compartments such
as nuclei, cytoplasmic vacuoles, the peri-vacuolar membrane re-

gion, cytoplasm, nucleus-vacuoles contact areas, from 3D RI to-
mograms of yeast cells in different phases/stages of their life cy-
cle. With the aim to develop, optimize, and test such a system,
a 3D biological model naturally exhibiting vacuoles was needed.
We selected yeast cells as a tunable biological model to test the
CSSI capability to isolate cytoplasmic vacuoles from 3D RI tomo-
grams. Identifying vacuoles in budding yeast cells is challenging
since the vacuolar size after reshaping is much lower than the
resolution limit calculated for the CSSI algorithm.[31] For this
reason, here we propose a strategy to go beyond this limit and
segment smaller organelles.

We demonstrate the segmentation of several sub-
compartments in flowing yeast cells at different phases,
hereafter also indicated as “stages”, of the budding process.
Indeed, we show that applying CSSI for segmenting the vacuole
allows the downstream identification of the volume containing
the vacuolar membrane (whose morphology, integrity, and com-
position are particularly relevant for the overall activity of the
vacuolar compartment,[32] including the cellular homeostasis,
metabolism, and lifespan[33,34]), the further segmentation of
the nucleus, the identification of the nucleus-vacuoles contact
volume, and the cytoplasm. The results shown in this work
are another critical step toward the highly sought intracellular
multi-specificity in the framework of the PCT-FC technology.

2. Results

The PCT-FC system and the numerical processing described
in the Experimental section have been employed to reconstruct
the 3D RI tomograms of flowing yeast cells. In the PCT-FC
paradigm, multiple digital holograms per cell are recorded while
it flows and rotates along a microfluidic channel. By keeping the
illumination direction fixed, the same cell is thus probed from
several viewing angles. From all the digital holograms of a single
cell, the corresponding QPMs are numerically extracted and, af-
ter estimating the corresponding set of viewing angles, ϑ (angle
tracking), the RI volumetric distribution at the single-cell level is
obtained. An example of QPM of a yeast cell is displayed in Figure
1a. The corresponding 3D RI tomogram, T = T{(ϑ, QPM)}, is
shown in Figure 1b via isolevel representation of its 3D external
shape and in Figure 1c by means of its central slice. The cell cycle
of a budding yeast cell (Figure S1a, Supporting Information) gen-
erally comprises G1, S, G2, and M phases, but the latter largely
overlap inside yeast cells.[35] During the G1 phase, the cell pre-
pares to split. Hence, at the end of the G1 phase, a myosin ring
appears where the bud will emerge during the S phase. Moreover,
during the S phase, a copy of the genetic material is synthesized,
therefore, during the last G2/M phase, the genetic material (e.g.,
the nucleus) moves inside the bud, thus creating the daughter cell
that will be finally detached at the end of the division process.[35]

In the reported experiments, flowing yeast cells at differ-
ent stages have been observed. In particular, the yeast cell in
Figure 1a–c has been caught at the early G1 phase (see Movie S1,
Supporting Information). In Figure 1d–f we report the QPM and
the PCT-FC reconstruction of a yeast cell at the late G1 phase
(see also Movie S2, Supporting Information), where we observe
a small bud starting to emerge on the right side (see the arrow
in the figure). Furthermore, a yeast cell at the S phase with a
more prominent bud is shown in Figure 1g–i (see Movie S3,
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Figure 1. PCT-FC of budding yeast cells at the a–c) G1 stage, d–f) late G1 stage, and g–i) S stage (see also Movies S1–S3, Supporting Information). a,d,g)
Example of QPM taken from the overall sequence used to reconstruct the 3D RI tomogram. b,e,h) 3D external shape of the yeast cell after tomographic
reconstruction. c,f,i) Central slice of the 3D RI tomogram. In (d–f), the arrows indicate the small emerging bud. In (g-i), the prominent bud is visible on
the right.

Supporting Information). The final G2/M case will be discussed
later. Referring to Figure 1e,f, it is worth underlining that the
ability of PCT-FC to record suspended cells instead of adherent
cells is fundamental to reproducing very small changes in the
3D shape of a yeast cell due to the very early budding process. In
addition to the sole 3D shape retrieval, PCT-FC allows observing
the RI distribution inside the cell during the different phases of

the budding process. The RI values depend on the biophysical
features (mechanical, electrical, and optical) of the biological
sample and its biochemical composition.[11] As the vacuoles
mainly have an aqueous content, they are clearly visible in
the 3D RI tomograms in Figure 1c,f,i in correspondence with
the lower values (see the inner blue regions). Consequently,
they can be segmented in each cell by setting a suitable RI
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threshold. However, as also suggested by the different color
bars in Figure 1c,f,i, due to the intra-species variability in the
distribution of the sub-compartments, cellular populations are
so heterogeneous that the same RI threshold cannot be optimal
for all the cells of a certain population. Hence, in a PCT-FC
experiment in which hundreds/thousands of cells are recorded,
thresholding is not reliable enough.

2.1. Generalized CSSI

The recently developed CSSI accurately isolates the 3D nuclear
volume inside the RI tomograms of suspended cells recon-
structed by PCT-FC.[31] CSSI is based on the property that dif-
ferent organelles inside the cell have different statistical distri-
butions of their RI values.[11] So far, it has been demonstrated
to work only for the segmentation of the nucleus inside human
cancer cells. For this purpose, the central voxels of the tomogram
have been chosen as reference set since, in most cancer cell lines,
it is reasonable to assume that the nucleus passes for the center
of the cell. As it is based on a statistical working principle, in
theory, the CSSI strategy is expected to work for segmenting any
organelle inside the cell by changing every time reference set and
by slightly adapting the algorithm to the specific cases. However,
we have also demonstrated an intrinsic limitation of this statis-
tical approach,[31] that is related to the statistical power of a hy-
pothesis test. In fact, the CSSI algorithm fails in segmenting or-
ganelles that are too small with respect to the imaging spatial res-
olution of the PCT-FC system, since the lower the number of vox-
els covered by a certain organelle, the lower the statistical power
of the hypothesis test, and then the lower the accuracy of the sta-
tistical segmentation. In particular, by means of a 3D numerical
cell phantom, we have proved that an organelle with an equiv-
alent radius lower than 15 pixels cannot be identified by CSSI.
To counteract this limitation, the state-of-the-art learning tomog-
raphy (LT) algorithm has been exploited to enhance the intracel-
lular resolution in the tomographic reconstruction.[31] However,
LT-based reconstructions take tens of minutes per cell, which is
a too-long computational time for high-throughput experiments.
Instead, here we consider a worse case in terms of imaging spa-
tial resolution since we reconstruct the tomograms through the
faster but less-performing FBP algorithm. In this way, we signif-
icantly save computational time, since the tomographic recon-
struction takes only a few seconds per cell. Therefore, the theo-
retical lower bound of 15 pixels is expected to further increase
in this case study. In addition, yeast cells measure about half of
human cancer cells, therefore the size of the inner vacuole re-
sults in being smaller than the CSSI lower bound established in
our previous work.[31] In general, the assumption of knowing a
starting voxel belonging to the organelle to be segmented statisti-
cally could be another important limiting factor for generalizing
CSSI to subcellular structures other than the nucleus. For the
above-mentioned reasons, the original CSSI algorithm would fail
in segmenting the vacuoles in these experimental test cases.

Here we report the generalization of the CSSI method to cope
with these cases and to extend it to other organelles and cell sub-
compartments. This strategy allows for overcoming the limita-
tion related to the imaging spatial resolution and considering or-
ganelles having RI statistical distributions and intracellular lo-

cations completely different from the nucleus ones. In order to
show the CSSI steps for the vacuole segmentation, we considered
the yeast cell at the G1 phase reported in Figure 1a–c.

Summarizing, we introduced two main differences with re-
spect to the original CSSI. The former is the use of prior bio-
physical information to identify a reference 𝜖-cube (after rough
segmentation based on a prior information-guided threshold).
Here we can consider intracellular compartments that don’t oc-
cupy necessarily the central voxel. A further new improvement
involves the use of an upsampling-downsampling scheme. In-
deed, the 𝜖 value that determines the size of the voxel cubes can-
not go under 8 pixels in order to ensure enough statistical power
for the hypothesis test. In principle, organelles having an equiva-
lent radius lower than 15 pixels cannot be segmented since they
are covered by very few distinct cubes with edges measuring 8
pixels. The yeast cells considered in this work are very small with
respect to the imaging spatial resolution of our optical recording
system, thus their size is close to the lower bound of 15 pixels
needed to implement the CSSI algorithm. For this reason, up-
sampling followed by down-sampling numerically overcomes the
issue related to a too-low statistical resolution. This additional
strategy makes the CSSI capable of converging to smaller seg-
mented volumes.

The main steps of the generalized CSSI (see also Movie S1,
Supporting Information) are sketched in Scheme 1, and hereafter
detailed.

• Coarse thresholding in Scheme 1 – To choose a reference set,
a first rough intra-vacuolar volume (see the blue volume in
the isolevels representation of Figure S2a, Supporting Infor-
mation) is obtained by considering the cellular voxels having
RI values lower than a fixed RI threshold. Prior biophysical in-
formation is employed at this step to establish the threshold; in
particular, we considered the large aqueous content of the vac-
uole and selected the threshold very close to the water RI value
(e.g., 1.360 has been employed for the reported experiments).

• Up-sampling step in Scheme 1 – Due to the limited imag-
ing spatial resolution of the PCT-FC setup used for experi-
ments, the reconstructed tomograms in Figure 1 and Figure
S2a, (Supporting Information) are made of 100 × 100 × 100
voxels. To enhance the resolution, the tomogram in Figure S2a
(Supporting Information) is brought to 200 × 200 × 200 voxels
by means of linear interpolation. In this way, the imaging spa-
tial resolution is numerically doubled, which means that the
CSSI lower bound is intrinsically halved.

• Identification of reference 𝜖-cube in Scheme 1 – The previ-
ous step of threshold-based coarse segmentation allows iden-
tifying a starting reference set that belongs to the organelle
to be identified. After dividing the doubled tomogram into
non-overlapping cubes having sides measuring 𝜖 pixels, the
central 𝜖-cube of the intra-vacuolar volume is chosen as the
reference set, as displayed in violet in Figure S2b (Support-
ing Information). Here, to segment smaller organelles, 𝜖 =
8 pixels is fixed instead of the 𝜖 = 10 value used for the nu-
cleus segmentation.[31] In fact, in reference[31] we have demon-
strated that the 𝜖 value cannot go under 8 pixels otherwise the
CSSI method cannot be implemented regardless of the imag-
ing spatial resolution.
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Scheme 1. Generalized CSSI: processing pipeline.

• Rough clustering by WMW test in Scheme 1 – All the other
𝜖-cubes (namely, test sets) are iteratively compared to the ref-
erence set by means of a statistical hypothesis test –, e.g.,
the non-parametric Wilcoxon-Mann-Whitney (WMW) test[30]

to decide whether they belong or not to the same organelle (i.e.,
to the same RI statistical distribution); thus, the rough clus-
tering shown in Figure S2c (Supporting Information) (blue
cubes) is obtained.

• Refinement of the organelle cluster in Scheme 1 – The cluster
is refined by repeating the statistical comparisons after increas-
ing the spatial resolution of the statistical search, i.e., after di-
viding the tomogram into 𝜖/2-cubes (Figure S2d, Supporting
Information);

• Closing and smoothing operations: PCH in Scheme 1 – The
refined cluster is closed by means of a polygonal convex hull
(PCH) and then smoothened by Matlab® conventional mor-
phological operators, see Figure S2e (Supporting Informa-
tion);

• Max-voting in Scheme 1 – The steps in the dashed box in
Scheme 1 are repeated N = 20 times in order to consider the
intrinsic statistical variability of the process, thus obtaining N

PCHs slightly different from each other, which are finally com-
bined through a max-voting strategy in order to obtain the vac-
uolar organelle convex hull (OCH), see Figure S2f (Supporting
Information).

• Down-sampling in Scheme 1 – The 200 × 200 × 200 tomo-
gram with the segmented vacuolar OCH is brought back to its
100×100×100 starting spatial resolution by means of a down-
sampling operation (Figure S3a, Supporting Information).

• Statistical RI thresholding in Scheme 1 – As displayed by the
central slice in Figure S3b (Supporting Information), the vac-
uolar OCH (black dashed line) does not overlap with the ex-
pected vacuolar core. Hence, an additional step with respect to
the original CSSI is further required. In particular, the voxels
belonging to the vacuolar OCH estimated by CSSI correspond
to the most representative voxels of the RI statistical distri-
bution about the vacuole. From this statistical distribution, a
RI threshold is automatically computed, i.e., the vacuolar vol-
ume is obtained as the group of voxels having RI values lower
than a RI threshold fixed as the 0.99-quantile of the RI statis-
tical distribution about the vacuolar OCH. The isolevels repre-
sentation of the isolated vacuolar volume is shown in Figure

Small Methods 2023, 2300447 © 2023 The Authors. Small Methods published by Wiley-VCH GmbH2300447 (5 of 16)

 23669608, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

td.202300447 by U
ni Federico Ii D

i N
apoli, W

iley O
nline L

ibrary on [06/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



www.advancedsciencenews.com www.small-methods.com

S3c (Supporting Information), while the corresponding cen-
tral slice is reported in Figure S3d (Supporting Information).
Remarkably, the dashed black line in Figure S3d (Supporting
Information) is now accurately overlapped with the searched
vacuole. More precisely, it can be inferred that the vacuolar vol-
ume obtained through the CSSI method corresponds to the in-
ner core of the vacuole, i.e., the darkest blue region containing
RI voxels with aqueous content, since the statistical inference
has been evaluated with respect to the reference set chosen as
the central part of the vacuole.

• Identification of peri-vacuolar membrane region in Scheme 1
– In Figure S3d (Supporting Information), outside the seg-
mented vacuolar volume, a ring (light blue region) made of
slightly higher RI values is visible. Referring to the structure
of the vacuole, it is reasonable to expect that this ring re-
gion contains the vacuolar membrane. Notably, the membrane
vacuole contains many integral protein complexes, including
the proton pumping V-ATPase, several transporters for amino
acids and metals, ion channels, or the membrane-associated
fusion and fission machinery necessary for vacuole morphol-
ogy control.[34] Therefore, the vacuolar membrane is a crowded
area that can reasonably support a higher RI than the more
aqueous liminal environment or the cytosolic one. Summing
up, the vacuolar inner core can be automatically segmented
through the generalized CSSI, then the peri-vacuolar mem-
brane region can be recognized as the external shell having
the smallest thickness possible with respect to the resolution
of the system, as shown in Figure S3e,f (Supporting Informa-
tion). Here a clarification is due. As the resolution is about
0.5 μm, the external shell is not exactly the vacuolar mem-
brane, which size can be expected to fall into the average size
of membrane thickness 4–10 nm.[36] Although the system res-
olution is not high enough to localize the membrane accu-
rately, the approach we proposed allowed us to identify the
peri-vacuolar area containing it.

• Nucleus identification in Scheme 1 – In the central slice in
Figure S3f (Supporting Information), the nucleus is visible at
the highest RI values, as it is dense with genetic material. In
order to isolate the nucleus of the yeast cells under analysis,
the CSSI algorithm cannot be applied even by numerically in-
creasing the imaging spatial resolution. Indeed, the typical size
of the nucleus in a yeast cell far exceeds the CSSI lower bound.
Nevertheless, the previous identification of the vacuole by gen-
eralized CSSI brings as an indirect consequence the possibility
to automatically segment the nucleus as well, since a spatial
constraint can be fixed by excluding the intracellular volume
occupied by the segmented vacuole. In fact, an RI threshold
can be automatically fixed such that the voxels with higher RI
values are not contained inside the segmented vacuole (i.e.,
both the inner core and the external shell). The nuclear vol-
ume obtained is shown in red in Figure S3g,h (Supporting In-
formation).

In addition, by knowing the 3D space occupied by the vac-
uole and the nucleus, the nucleus-vacuole junctions (NVJs) can
be isolated by means of morphological operations (see the violet
volume in Figure S3g,h, Supporting Information). NVJs belong
to the membrane contact sites (MCSs), the area of closed appo-
sition between membranes of two organelles.[37] In eukaryotes,

every organelle establishes MCSs each other for inter-organelle
communication thanks to a rapid exchange of small molecules,
including ions and lipids.[38] Particularly, NVJs play a pivotal role
in different cellular processes, such as in lipid and ion transport,
in lipid droplet biogenesis under stress conditions, and in co-
ordinating a specific type of selective autophagy termed piece-
meal microautophagy of the nucleus (PMN).[39,40] In yeast, NVJs
are formed by specialized protein complexes that are locally re-
distributed to define a flat active zone between the two princi-
pal anabolic and catabolic cellular organelles, thereby being in a
key position to adapt inter-organelle communication to metabolic
demands.[41,42] Accordingly, it has been shown that glucose depri-
vation triggers the formation and expansion of NVJs. Moreover,
we analyzed yeast cells resuspended in water, which replaces the
glucose deprivation conditions favoring the NVJs formation and
visualization as an extended and flat area between the two or-
ganelles.

In summary, the vacuolar inner core is obtained first; then,
the peri-vacuolar membrane region the nucleus, and the vacuole-
nucleus contact site can be automatically recognized as an indi-
rect consequence of the application of CSSI to the vacuolar re-
gion. Finally, the cytoplasmatic region can be considered as the
remaining cell volume (Movie S1, Supporting Information).

2.2. Quantitative Specific PCT Analysis of Flowing Yeast Cells

The label-free identification of sub-compartments in the flowing
yeast cells is shown in Figure 2 and Movies S1–S3 (Supporting
Information). In particular, Figure 2a,e,i,b,f,j respectively show
isolevels representations and the tomographic central slices for
the yeast cells undergoing the G1 phase, the late G1 phase, and
the S phase (i.e., the same cells shown in Figure 1). In Figure 2,
the estimated vacuolar inner core, peri-vacuolar membrane
region, and nucleus are simultaneously highlighted. Here, two
morphological considerations can be made thanks to the PCT-FC
property of reconstructing suspended cells in 3D. The volume
growth experienced by the vacuole after the treatment of the
yeast cell in water, and the vacuole-nucleus attraction at the con-
tact site (discussed above), leads to a flattening of the nucleus in
correspondence to the contact region. Moreover, while in cells at
the G1 phase and the late G1 phase (Figure 2a,b,e,f, respectively)
nucleus has mainly a roundish 3D shape, and a non-roundish
shape can be observed at the S phase in Figure 2i,j. This result is
coherent with the duplication of the genetic material that occurs
during this cell cycle’s phase and that will lead to the detachment
of a second nucleus for the daughter cell. In addition to the
sole morphological analysis that can be provided by a standard
FIFC system, PCT-FC allows also measuring biophysical fea-
tures related to the segmented intracellular organelles based on
their RI values.[43] For this reason, in Figure 2c,g,k we report
the RI histograms corresponding to the 3D RI tomograms in
Figure 2a,b,e,f, i,j, respectively. In the retrieved histograms, we
highlighted the contributions of the segmented organelles, i.e.,
the vacuolar inner core, the vacuolar membrane, the nucleus,
and the cytoplasmic region. In other words, the generalized CSSI
enabled us to move from the analysis of the overall cell histogram
(dashed yellow line in Figure 2c,g,k) to its fragmentation into its

Small Methods 2023, 2300447 © 2023 The Authors. Small Methods published by Wiley-VCH GmbH2300447 (6 of 16)
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Figure 2. Multi-specificity in budding yeast cells at the a–d) G1 stage (Movie S1, Supporting Information), e–h) late G1 stage (Movie S2, Supporting
Information), and i–l) S stage (Movie S3, Supporting Information). a,e,i) Isolevels representation of the PCT-FC tomogram of the yeast cell (green) with
highlighted the vacuolar inner core (dark blue), the vacuolar membrane (light blue), and the nucleus (red). b,f,j) Central slice of the PCT-FC tomogram of
the yeast cell with highlighted the vacuolar inner core (dashed black line), the vacuolar membrane (solid blue line), and the nucleus (solid red line). c,g,k)
RI histograms of both the overall yeast cell (yellow dashed line) and the segmented compartments. d,h,l) QPM obtained after overlaying the contours
of the segmented vacuolar inner core (dashed black line), the vacuolar membrane (solid blue line), and the nucleus (solid red line).

Small Methods 2023, 2300447 © 2023 The Authors. Small Methods published by Wiley-VCH GmbH2300447 (7 of 16)
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components associated with each organelle considered in this
work (solid green, red, blue, and light blue lines in Figure 2c,g,k).

Finally, in Figure 2d,h,l we report again the QPMs shown in
Figure 1a,d,g, respectively, where we overlayed the contours of
the regions corresponding to the vacuolar inner core (dashed
black line), the vacuolar membrane (solid blue line), and the nu-
cleus (solid red line) after segmentation. As it occurs for the RI
values in the tomographic central slices in Figure 2b,f,j, and also
in the QPMs of Figure 2d,h,l, the segmented regions are compat-
ible with the variations in terms of phase values.

In order to validate the proposed vacuole identification method
against ground truth, we acquired light microscopy images of the
yeast cells in H2O before inserting them into the PCT-FC system
(see Figure 3a). As a quantitative parameter to compare the mea-
surement while compensating any bias due to the different mea-
surements’ conditions (PCT-FC works in suspension, light mi-
croscopy images are acquired with cells at rest on a Petri dish), we
measured the cell-vacuole size scaling, i.e., the ratio between the
cell diameter and the diameter of the main roundish vacuole.[44]

We compared the measurements from the 33 cells reconstructed
by PCT-FC at the G1 phase to the light microscopy measure-
ments over 100 yeast cells at the same stage and in the same
buffer. Results are reported in the boxplot of Figure 3b and show
an excellent agreement between the two measurements. Besides,
we randomly extracted 1000 subgroups of 33 cells from the 100
ground-truth cells and, for each of them, we computed the p-
value with the 33 PCT-FC cells related to the cell-vacuole size
scaling. At this aim, we have employed the two-sample t-student
test, thus obtaining a p-value of 0.54 ± 0.21, which suggests that
the PCT-FC measurements are in very good agreement with the
measurements obtained through the ground-truth technique.

Figure 3c shows the results of further comparison with
fluorescence-labeled vacuoles imaged using a confocal micro-
scope (Thunder Imager 3D cell culture microscope). We used the
lipid fluorescent probe FM4-64 to decorate the vacuolar mem-
brane of 100 yeast cells. FM4-64 is an amphipathic fluorescent
molecule that is partially inserted into the membrane bilayer
without passing it. As such, this probe reaches the vacuolar
compartment by endocytosis and decorates the limiting vacuo-
lar membrane but not its lumen. Next, we considered the three
main diameters of the 3D reconstructed vacuoles. In Figure 3c,
we show the boxplots of the vacuolar size, defined as the average
size of the three measured diameters, for both the CSSI and the
confocal FM. Results are in good agreement with a residual dif-
ference between the median values of 0.4 μm. This is explainable
and coherent with the expectations since the CSSI-based method
distinguishes the lower RI of the vacuole lumen and, for the reso-
lution limit, is less accurate for the peripheral luminal area close
to the vacuolar membrane, thereby slightly underestimating the
vacuolar size. On the other hand, the fluorescent-based method
allows the determination of the vacuolar size by looking at the dif-
fuse fluorescent signal generated by the membrane-bound probe
which, by definition, decorates the most peripheral vacuolar layer.
Moreover, due to the light diffusion effect, the fluorescent-based
method can overestimate the vacuolar size. This is an intrinsic
limitation that affects any fluorescence-based microscope and is
a further argument for investigating new label-free methods.

As a further testbed, we introduced specificity also in the chal-
lenging case of a yeast cell at the G2/M phase, in which the big-

Figure 3. Validation of vacuole segmentation in PCT-FC. a) Example of
light microscopy images acquired to measure the ground-truth sizes of
cells and their vacuoles. Scale bar: 21.8 μm. b) Box-plot of the cell-vacuole
size scaling calculated by the generalized CSSI algorithm in PCT-FC mode
(33 cells) compared to the corresponding one related to the ground-truth
measurements (100 cells). c) Boxplot of the vacuolar size calculated from
the PCT-FC measures and the measures of a confocal FM. The red lines
in the boxplots indicate the median values, while the bottom and top blue
edges indicate the 25th and 75th percentiles, respectively.

Small Methods 2023, 2300447 © 2023 The Authors. Small Methods published by Wiley-VCH GmbH2300447 (8 of 16)
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Figure 4. Specificity in a budding yeast cell at the G2/M stage (Movies S4–S6, Supporting Information). a) a QPM taken from the overall sequence
used to reconstruct the 3D RI tomogram, with highlighted the vacuolar inner cores (dashed black lines), the vacuolar membranes (solid blue lines), and
the nuclei (solid red lines). b,c) Two central slices of the PCT-FC tomogram and a QPM of the yeast cell with highlighted segmented compartments.
d) 3D external shape of the yeast cell, with highlighted in red the plane used to divide the mother cell from the daughter cell. e,f) Refined clustering of
the 𝜖/2-cubes for the vacuolar segmentation in the mother array (after doubling) and the daughter array (after quadrupling), respectively. g) Isolevels
representation of the PCT-FC tomogram of the yeast cell (green) with highlighted the vacuolar inner core (dark blue), the vacuolar membrane (light
blue), and the nucleus (red). h,i) RI histograms of both the overall yeast cell (yellow dashed line) and the sole segmented organelles inside the mother
cell and the daughter cell, respectively.

ger mother cell and the smaller daughter cell are still attached to
each other, even if parts of the vacuole and the nucleus have al-
ready migrated from the mother cell to the daughter cell (Movies
S4–S6, Supporting Information). This can be clearly seen in a
2D QPM of the recorded sequence in Figure 4a, and better ob-
served in two central slices of the corresponding 3D RI tomo-
gram in Figure 4b,c. To segment the intracellular organelles, the
190 × 190 × 190 tomographic array is divided into two 3D ar-

rays, i.e., the 100 × 100 × 100 left array containing the mother
cell and the 90 × 90 × 90 right array containing the daughter cell
(see Figure 4d). The generalized CSSI pipeline is applied sepa-
rately to the two arrays. At this aim, as shown in Figure 4e, the
array corresponding to the mother cell is numerically doubled
up to 200 × 200 × 200 voxels, while the array corresponding to
the daughter cell is numerically quadrupled up to 360 × 360 ×
360 voxels to consider the smaller vacuolar size (Figure 4f). After

Small Methods 2023, 2300447 © 2023 The Authors. Small Methods published by Wiley-VCH GmbH2300447 (9 of 16)
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identifying the two vacuolar inner cores, the corresponding peri-
vacuolar membrane regions and nuclei are identified. Hence, as
shown in Figure 4g, we segmented multiple organelles simulta-
neously in both the mother and daughter cells in the case of a
budding yeast cell right before its duplication (see Movies S4–S6,
Supporting Information, reporting all the stages of the proposed
segmentation pipeline). The boundaries of the segmented com-
partments are highlighted in Figure 4a–c. The specific RI his-
tograms of the mother cell and the daughter cell are respectively
reported in Figure 4h,i. After identifying the organelles and sub-
compartments inside the yeast cells, PCT-FC allows measuring,
for each of them, quantitative features related to their 3D mor-
phology, 3D location inside living suspended cells, and RI-based
parameters. These quantitative measurements are reported in
Tables S1–S5 (Supporting Information) about the overall cell, the
nucleus and the vacuole-nucleus contact site, the vacuolar core,
the peri-vacuolar membrane region, and the cytoplasmic region,
respectively, separately for each cell herein shown. In particu-
lar, the equivalent radius is the radius of a sphere having the
same volume as the analyzed object. The sphericity is the ratio
between the surface area of a sphere having the same volume as
the analyzed object and the surface area of the object (it is 100%
in the case of a perfect sphere). The principal axes’ lengths are
the lengths of the major axes of the ellipsoid having the same
normalized second central moments as the analyzed object. The
organelle-cell distance is the distance between the organelle cen-
troid and the cell centroid. The organelle-cell normalized distance
is the organelle-cell distance normalized to the cell equivalent di-
ameter. Finally, the dry mass is the amount of non-aqueous con-
tent contained inside the analyzed object, i.e.

dry mass =
(
n̄ − n0

)
V

𝛼
(1)

where n̄ is the average RI, n0 is the RI of the surrounding
medium, considered homogeneous (n0 = 1.334), V is the ob-
ject volume, and 𝛼 is the refractive increment.[4] The dry mass is
one of the most representative parameters accessed by QPI tech-
niques. For example, it has been exploited to classify the cell cycle
stage.[45] When different objects must be compared in terms of
dry mass, it is preferable to normalize the dry mass to the ob-
ject’s volume, thus obtaining the dry mass density, which is re-
ported in Tables S1–S5 (Supporting Information). In this way, we
observe that the vacuolar cores have a dry mass density around
0.15 pg μm− 3, i.e., about 70% of the overall cell dry mass density,
while the nuclei have a dry mass density around 0.42 pg μm− 3,
i.e., twice the overall cell dry mass density. This large difference
(the nucleus has almost three times larger dry mass density than
the vacuole) is due to the biochemical composition of these two
organelles. In fact, nucleus is a dense organelle full of genetic
material, while the vacuole is mainly made of water content. Sim-
ilarly, we observe that the dry mass density measured for the peri-
vacuolar membrane is significantly larger than the same param-
eter measured for the vacuolar core. This result is coherent with
the above-mentioned biophysical considerations about the com-
position of this sub-compartment. It is interesting to note that
the vacuole-nucleus contact site exhibits higher dry mass density
with respect to both the vacuolar inner core and the cytoplasm.
Besides, this parameter measured at the contact site is higher

than the dry mass density measured over the whole peri-vacuolar
membrane region. These results are in very good agreement with
the expected function of this sub-compartment, discussed above.
Indeed, the NVJ is a crowded area, due to the presence of three
membranes (i.e., two of them belonging to the nuclear envelop
and one to the vacuolar membrane), with a high concentration of
specialized protein complexes which structurally and function-
ally define this compartment, fully supporting the presence of
higher RI and dry mass density values.

2.3. Inspection of Segmented Tomograms by Virtual Reality

Intracellular multi-specificity in 3D RI tomograms comes with
a problem to tackle, related to the complexity of handling the
associated information content. Conventional slice-by-slice rep-
resentations of the tomograms are not the most suitable way
to flexibly inspect the RI distributions associated with the sub-
compartments. On the other hand, specificity allows one to move
from a quasi-continuous distribution of RIs to statistically accu-
rate isolevel representations of each organelle. Hence, here we in-
vestigate a novel modality of fruition of the 3D tomographic flow
cytometer outcomes, based on a virtual reality (VR) setting.[46–49]

We show how using a VR kit, it is possible to interact with objects,
obtain quantitative information about each sub-compartment,
observe them from outside or inside the cell, and visually verify
their structure from the preferred perspective in an immersive
way.

The immersive and interactive VR tool lends itself well to im-
proving the perception and acquisition of information. Some
works like[46] introduce VR for the first time as an instrument
through which the 2D views of a microscope can be transformed
into 3D views that can be manipulated interactively. In,[47] the au-
thors present a VR-based interaction framework in which users
can manipulate helical chains of methane in a nanotube, and
estimate the user performance during task execution. The work
described in[48] is an example of delivering a more effective and
cognitively comprehensible histopathology laboratory than tradi-
tional labs. The paper in[49] highlights how VR increasingly es-
tablishes itself as a new technique for visualizing, interacting,
and using 3D images in the cellular field. Here we give users the
possibility to request on demand the quantitative parameters of
the single cell as a whole and, specifically, of each organelle/sub-
compartment. Moreover, VR can be used in this framework to
enter and travel inside the tomogram, to inspect from the most
favorable perspective important sections like, e.g. the organelles’
contact and proximity regions. Details on the VR module are pro-
vided in the Experimental Section. Since the print medium is not
the best way to showcase interactivity, this paragraph proposes a
walkthrough of the inspected cells to show the potentialities of
the VR application created. An example of the experience tried
by a user wearing the VR helmet is shown in Movie S7 (Support-
ing Information).

There are a few ways in which an immersive environment can
enhance the visualization and analysis tasks. In this work, the
objective is to provide a better way to inspect 3D data by “scal-
ing” the cells so that a user can roam freely around and inside
them. The possibility of showing quantitative analysis more con-
textually is explored too. After putting on the VR helmet, the user
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Figure 5. Virtual Reality environment. a) The user wearing the helmet selects the folder with the cells of interest. b) Budding Yeast Cell (G2/M phase)
is selected. c) Quantitative biophysical parameters of the mother and daughter cells are displayed. The parameters of the nucleus of the mother cell are
retrieved on demand when the user clicks on it with the pointer. d) Vacuolar core parameters are accessed on demand using the pointer. e) The cell can
be explored from inside or outside and the inheritance region is shown. f) The user enters inside the cell and can explore the proximity region between
the cytoplasmic vacuole and the nucleus from the chosen perspective.

can select the cells to inspect, grouped based on the evolution-
ary stages. When the user clicks with the pointer on a specific
folder, she/he finds himself immersed in an environment where
the selected cell can be accessed and analyzed in detail. Selec-
tion happens akin to pointing things with a laser pointer. Re-
porting info back to the user is performed via a tablet present
in the virtual environment. Since there is a possibility that the
laser pointer ray intersects and might select more than one ob-

ject/organelle, it is possible to switch the organelle of interest
with the main trigger of the left controller. The full sequence
reported in Movie S7 (Supporting Information) is hereafter de-
scribed, and summarized in Figure 5. After selecting the folder
with the cell and the stage of interest (Figure 5a), the user sees
the cell in front of him. On the top of the cell the label “Bud-
ding Yeast Cell: G2/M Stage” indicates the selected element and
the corresponding stage (Figure 5b). After a few seconds, two
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tables appear, showing the measured biophysical parameters for
the mother and the daughter cells in the budding yeast. In this
way, the user can analyze the cell and its organelles from outside.
In the next step, the user clicks on the nucleus with the pointer,
and a table appears on the tablet, showing the retrieved specific
biophysical parameters of this organelle, e.g. volume, dry mass
density, and average RI in this case (Figure 5c). In a subsequent
step, the user faces the vacuole and its membrane, and by click-
ing on it, associated tables are shown on the virtual tablet (e.g.,
the vacuolar core parameters are retrieved, Figure 5d). After these
tasks, the user observes the inheritance structure (Figure 5e),
then she/he crosses the membrane and looks at the organelles
from inside the mother cell. The user continues towards the in-
heritance structure between the two cells and is able to look at the
proximity region between the vacuole and nucleus (the vacuole-
nucleus contact site shown in Figure S3g (Supporting Informa-
tion) is not reported in this example for the sake of simplicity),
Figure 5f. At the end, the user leaves the scene and can inspect
any of the other cells on demand by using the pointer. The VR
application we presented is the first attempt to inspect 3D PCT
data in a 3D interactive environment and we believe it has a non-
negligible unexplored potential. The VR tool simultaneously al-
lows a 3D fruition of the data and a visual sharing of information
with an indefinite number of users. In the future, bringing PCT
to the metaverse could bridge the gap between the research com-
munity of microscopists, physicians called to judge cells for med-
ical diagnostics, and the general public for entertainment and ed-
ucational/training use.

3. Conclusion and Discussion

Lack of intracellular specificity is the main limitation factor for
all QPI methods. In-flow PCT allows gathering very informative
data content at the single cell level in flow cytometry mode. How-
ever, a 3D tomogram returns a dense distribution of RIs with sen-
sitivity depending on the optical and cell rotation features, i.e.,
the number and the range of probing angles. Associating vox-
els of the tomogram to a certain substructure/organelle is the
main pathway to emulate the specificity of FM. In the case of
cells spread out on a surface, RI thresholding was used to identify
elements with high RI contrast, such as lipid droplets (LDs),[18]

nucleoli,[19] or monosodium urate crystals,[20] as well as exoge-
nous gold nanoparticles,[21] which have high RIs. In the case of
a PCT-FC system, we have demonstrated that LDs can be visual-
ized and quantified in 3D suspended/flowing cells by means of
an RI threshold.[22]

As discussed before, AI-based approaches are viable to em-
ulate specificity in 2D QPI and 3D RI tomograms in static or
quasi-static conditions.[24–30] Accurate localization of the 3D flu-
orescence signal is hard to achieve though. In general, AI-based
models that use the 3D fluorescence channel as a ground truth
are intrinsically limited in reconstruction accuracy since a net-
work cannot perform better than the reference data it has been
trained with. In order to solve the specificity issue in PCT-FC,
CSSI has been proposed to identify the voxels belonging to
the cell nucleus.[31] CSSI does not rely on AI and fluorescence
examples/ground-truth, but rather it infers the property of a voxel
to belong or not to a certain region by means of local statisti-
cal tests on the basis of the cell’s RI distribution. In this work,

we have generalized the CSSI algorithm (Scheme 1) to obtain
specificity on cytoplasmic vacuoles, whose identification in high-
throughput flow cytometry mode could have important appli-
cations in diagnostics and medicine.[50-64] Besides the vacuoles
and the nuclei, the generalized CSSI strategy reported here is
capable of identifying, segmenting, and quantitatively analyzing
other cell sub-compartments, i.e., the peri-vacuolar membrane
shell, the vacuole-nucleus contact site, the cytoplasmic region
(see Figures 2 and 4; Figure S3g, and Tables S1–S5, Supporting
Information). We benchmarked the algorithm by tuning the size
of vacuoles in yeast cells in different phases of their life cycle.
The measure of the cytoplasmic vacuole is in very good agree-
ment with light microscopy observation of yeast cells at the same
stage under similar osmotic conditions. The dry mass density
measured by PCT-FC is coherent with the biophysical properties
of the segmented organelles and compartments, which is a fur-
ther validation of the effectiveness of the statistical segmentation
approach. As a more challenging result, we identified the same
organelles/sub-compartments in both the mother and daughter
cells belonging to yeast cells subject to the budding process. Four
technical challenges have been met in this work:

i. We handled the case of an organelle that does not necessar-
ily contain the cell central voxel (which was the main starting
hypothesis of CSSI). Rather, we used prior biophysical infor-
mation on the label-free organelle to be isolated.

ii. We demonstrated the applicability of the CSSI to the vac-
uoles, i.e., organelles with low RI values and distribution
completely different from the RI values of the nucleus.

iii. Organelles with size challenging the resolution of the optical
system have been segmented from tomograms obtained us-
ing the rapid FBP reconstruction algorithm rather than the
LT one. In our previous work,[31] the LT algorithm allowed
us to improve resolution and RI sensitivity in the tomogram
reconstruction, at the cost of computational time. Unlocking
the use of the FBP algorithm coupled with the CSSI allows
gaining about two orders of magnitude in terms of compu-
tational time, which is an important step forward for high-
throughput in PCT-FC analysis.

iv. As an indirect consequence of the generalized CSSI, sub-
compartments other than the nucleus and the vacuoles have
been localized. Thus, the whole cell RI histogram can be frag-
mented into its main components, to measure specific infor-
mation on each sub-compartment in a flow condition.

PCT was already employed to reconstruct the label-free 3D RI
distribution of yeast cells. However, the PCT setups employed
so far worked in static conditions and were framed inside the
two conventional PCT recording principles.[5,12] In particular, in
a previous work based on a static PCT-SR configuration, vacuoles
were segmented inside the 3D RI tomograms of suspended yeast
cells by means of RI-based thresholding.[12] However, due to the
intraspecies variability, the same RI threshold cannot work in the
same way for all the cells of a certain population. Hence, in a
PCT-FC experiment in which hundreds/thousands of cells will
be recorded, mere thresholding is not a viable and reliable strat-
egy. The CSSI algorithm comes with the advantage of being fully
automatic and self-consistent with the information contained
within the analyzed cell, independently from the other ones be-
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longing to the same population. In addition, the CSSI takes into
account the inherent statistical similarities among voxels of the
same organelle, therefore the boundary of the vacuole can be
found with high accuracy, unlike a manual/custom setting of the
RI threshold. Once most of the voxels have been associated with
organelles statistically identified, an automatic threshold, well-
tailored to the remaining compartment to be isolated is set auto-
matically. In this work, the generalized CSSI was applied to yeast
cells as a model cell line. However, its applicability is expected
to be extendable to other cell types. Eukaryotic cells contain dif-
ferent membrane-enclosed organelles whose shape and dimen-
sion can reflect the health status of the cell since their morpho-
logical alteration is generally linked to a dysfunctional patholog-
ical situation.[50,51] Accordingly, the formation of large cytoplas-
mic vacuolar structures has been identified in many pathologies,
such as lysosomal storage diseases (LSDs),[52] cancer,[53–57] and
viral infections,[58-60] including the more recent SARS-CoV-2.[61]

Vacuoles have also been found in the macrophages of patients
exposed to Gram-negative bacteria lipopolysaccharide.[62] In ad-
dition, in leukocytes, vacuoles are also reported upon exposure
to various chemicals.[63,64] Indeed, many drugs used for oncologic
treatment are weak bases that can be protonated and sequestered
within lysosomes, thereby causing their vacuolation[65] and exert-
ing chemoresistance in cancer cells.[66] Therefore, cytosolic vac-
uolation can be exploited for different purposes, including diag-
nosis. Moreover, the formation of lysosomal vacuoles represents
a hallmark for LSDs[67] and either genetic or drug screenings
have been conducted to identify which protein machinery drives
this expansion or which drugs can revert or prevent it.[68] In or-
der to exploit CSSI for high-throughput diagnostics, the overall
reconstruction and segmentation process, here implemented on
a general-purpose desktop computer, could be in the future paral-
lelized and implemented on multicore workstations working on
Graphical Processing Units (GPUs).

Furthermore, the possibility to move from a dense RI distri-
bution to an isolevels representation of the tomograms where or-
ganelles are accurately segmented, allowed us for the first time
to explore a new modality in the fruition of the tomograms using
VR. The processed tomograms are the input to the VR system.
We have shown that users can enter inside the tomograms of
each single cell and explore different perspectives of each of the
isolated organelles while receiving specific quantitative informa-
tion associated with them on demand. The field opens up for data
inspection through interaction with additional senses, e.g. tactile
stimuli based on the organelles’ dry mass and surface roughness.
While here we focused on the fruition of segmented tomograms
by VR, we foresee for the future a more important exploitation of
the tool that could help the tomogram processing, identification
of sub-compartments, cell classification, and sorting. We believe
this first attempt could trace the route to a novel way of analyzing
and sharing such data in the visually interactive metaverse by re-
searchers, biologists, and physicians, for research scopes and also
for training, popular science education, and outreach.

4. Experimental Section
Sample Preparation: Baker yeast, Saccharomyces cerevisiae, were cul-

tivated in YPD (yeast extract, peptone, dextrose 2%) agar plates starting
from a live fresh yeast cube of 25 g commercially available at the super-

market. Specifically, a small portion of the yeast cube was spread on YPD
agar plates and incubated at 30 °C for 24 h up to the appearance of white
colonies. A single colony was picked up and transferred into a 4 mL liq-
uid YPD tube, and cells were grown for another incubation time of 24 h at
30 °C. Before running the experiment, the optical density (OD) of the yeast
culture was determined by measuring the absorbance at 600 nm with a
spectrophotometer. According to this value, cells were diluted in 4 mL of
YPD up to 0.5OD and grown at 30 °C for 2 h. After that, cells were collected,
and YPD media was replaced with 1 mL of sterile H2O and incubated for
10 min before starting the PCT-FC experiment.

FM4-64 Staining, Microscopy Acquisition, and Vacuole Diameter Analy-
sis: FM4-64 staining was performed as previously described.[32,69] Briefly,
cells were inoculated from a pre-culture in the stationary phase and grown
overnight to the logarithmic phase (OD600 nm between 0.2 and 0.8) in
agitation at 30 °C. After diluting OD600 = 0.2 in 1 mL culture, 10 μM FM4-
64 was added from a 10 mM stock in DMSO. Cells were incubated for 1 h
in agitation conditions at 30 °C and followed by three washing steps with
medium without FM4-64 (2 min, 3000 g). After that, cells were incubated
for the subsequent chase of 2 h in a medium without FM4-64 to let the
probe reach the vacuolar compartment by the endocytic route. After the
chase, cells were exposed to different osmotic conditions (i.e., H2O for
the hypotonic and 400 mM NaCl for the hypertonic conditions), Figure
S1b (Supporting Information). The temperature was maintained constant
during visualization using an environmental control chamber and an ob-
jective heater. A Leica Thunder Imaging System (Leica Microsystems Wet-
zlar, Germany) equipped with a LEICA DFC9000 GTC camera, lumencor
fluorescence LED light source, and 100× oil immersion objective was used
to acquire Z-slice images. The determination of vacuole diameters was ob-
tained using the ImageJ Fiji software. These were used to assess quantita-
tively the possibility of tuning the number and size of cytoplasmic vacuoles
by acting on the buffer. Briefly, the nm length of each vacuole diameter has
been calculated by measuring the number of pixels contained for each di-
ameter and dividing by the number of pixels contained in the internal scale
bar (10 μm) obtained from the Thunder Imaging System. 100 vacuole di-
ameters were analyzed for each experimental condition (mock, H2O, and
NaCl). The analysis assessed the effective tuning of the vacuole sizes as
an effect of the external medium osmolarity.

PCT-FC Setup: PCT-FC experiments were performed through the
opto-fluidic recording system sketched in Figure 6a.[22] The optical mod-
ule was a DH microscope in an off-axis configuration based on a Mach-
Zehnder interferometer. A polarizing beam splitter (PBS) splits the original
coherent beam (532 nm laser) into an object and a reference beam. The
ratio between the two beams’ intensities was balanced by two Half-Wave
Plates (HWPs). The object beam illuminated the cells flowing along the
microfluidic channel and then it was collected by a high numerical aper-
ture microscope objective (MO1, NA = 1.3) and sent to a tube lens (TL1).
Instead, the reference beam passed through a beam expander, a second
microscope objective (MO2), and a second tube lens (TL2). The interfer-
ence between the resulting object and reference waves were produced in-
side a Beam Splitter (BS) acting as a combiner. Finally, the obtained digital
hologram was recorded by the CMOS camera (5120 × 5120 pixels, 4.5 μm
each pixel, 30 fps). An example of a recorded digital hologram is shown
in Figure 6b. The fluidic module was made of a microfluidic channel (Mi-
crofluidic ChipShop 10000107 – 200 μm × 1000 μm × 58.5 mm) in which a
laminar flow was generated by an automatic low-pressure pump at about
50 nl s−1. If cells were not exactly in the center of the channel’s cross-
section, cells underwent a velocity gradient due to the parabolic velocity
profile of the laminar flow, which induced their roto-translation along the
microchannel. In particular, as sketched in Figure 6b, cells were recorded
along the optical z-axis, flow along the y-axis, and mainly rotated around
the x-axis, since the field of view (FOV) was fixed in the center with re-
spect to the x-axis and in the bottom with respect to the z-axis.[22,31] The
FOV measures 640 μm × 640 μm (corresponding to 5120 × 5120 pixels),
therefore hundreds of digital holograms were recorded per cell at multiple
viewing angles.

PCT-FC Numerical Processing: From each 5120 × 5120 digital holo-
gram of the video sequence recorded by the PCT-FC system, several QPMs
were numerically computed containing single flowing cells.[22] At this aim,
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Figure 6. PCT-FC paradigm. a) Opto-fluidic recording system. MO, microscope objective; HWP, half-wave plate; PBS, polarizing beam splitter; M, mirror;
TL, tube lens; BS, beam splitter; CMOS, camera. b) Example of a digital hologram recorded by the PCT-FC system, with highlighted in the inset a yeast
cell at the G1 phase. The scale bar is 50 μm.

384× 384 regions of interest (ROIs) were cropped around the cells. Thanks
to the off-axis configuration of the DH microscope, the diffraction orders
did not overlap in the Fourier domain, so a Fourier band-pass filtering
was employed to select the real diffraction order and demodulate each
holographic ROI.[8] Then, cells were numerically refocused by exploiting
the DH features.[22] In particular, the Angular Spectrum method was im-
plemented to numerically propagate the holographic ROI along the op-
tical axis, and then an image contrast-based metric (i.e., the Tamura Co-
efficient) was minimized to find the cell’s focal distance. After extracting
the argument of the refocused complex wavefront, a reference hologram
was subtracted to remove residual optical aberrations, the 2D windowed
Fourier transform filtering was used to denoise the resulting phase map,
and the PUMA algorithm was employed for the phase unwrapping.[70] The
obtained QPMs were centered with respect to their weighted centroids. For
each flowing cell, its rolling angles were estimated by exploiting its QPMs,
holographic tracking, and microfluidic properties. Finally, for each cell, the
FBP algorithm was fed by the QPMs and the corresponding rolling angles
to reconstruct its 3D RI tomogram.[10]

VR Module: The application was built using Unity[71] as the develop-
ment platform, while on the hardware side, a workstation with an nVidia
Quadro A4500 and HTC VIVE Pro 2[72] were used. The prototype used
OpenXR for interfacing with the VR headset and the associated controllers.
The prototype exploited HTC VIVE Pro 2 and its base stations for provid-
ing the possibility to freely roam in the proposed environment, while at the
same time retaining the possibility to “teleport” to a new location, with-
out physical locomotion, when it was more convenient for the user. For the
sake of the graphical representation, tomograms were processed in order
to obtain higher-resolution meshes. The smoothing process was benefi-
cial for the representation and for the user interactions as well. Indeed,
smoothing each object enabled to obtain a more “organic” feel, where the
discretization imposed by the limits of current scanning technologies in-
volved in getting the tomogram voxels almost “vanished” when the user
was immersed in the environment. A second polygonal version of each
object-organelle was also obtained by “decimating” the higher resolution
mesh – this was used for collision detection, internally used by the VR
system for understanding which objects the user was pointing to. In ad-
dition to the helmet position for exploring the virtual environment from
different perspectives, interaction was enabled by the Vive wand left and
right controllers, used for selecting organelles with the virtual laser pointer
and obtaining contextual information via the virtual tablet. Moreover, ag-
gregate data, for example, related to the mother and daughter cells as a

whole, were shown on camera-facing billboard panels on top of the cells,
so that the user could always read them more easily.
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