1,241 research outputs found

    Crystal engineering of high explosives through lone pair-p interactions: Insights for improving thermal safety

    Get PDF
    In this high-risk/high-reward study, we prepared complexes of a high explosive anion (picrate) with potentially explosive s-tetrazine-based ligands with the sole purpose of advancing the understanding of one of the weakest supramolecular forces: the lone pair-p interaction. This is a proof-of-concept study showing how lone pair-p contacts can be effectively used in crystal engineering, even of high explosives, and how the supramolecular architecture of the resulting crystalline phases influences their experimental thermokinetic properties. Herein we present XRD structures of 4 novel detonating compounds, all showcasing lone pair-p interactions, their thermal characterization (DSC, TGA), including the correlation of experimental thermokinetic parameters with crystal packing, and in silico explosion properties. This last aspect is relevant for improving the safety of high-energy materials.The financial support provided by the MUR - Dipartimenti di Eccellenza 2023–2027 (DICUS 2.0) to the Department of Chemistry ‘‘Ugo Schiff’’ of the University of Florence is acknowledged

    Supramolecular forces and their interplay in stabilizing complexes of organic anions: tuning binding selectivity in water

    Get PDF
    How do different supramolecular forces contribute to the stabilization of complexes of organic anions in water? Oftentimes, when debating such a theme, we refer to broad concepts like positive or negative cooperative effects; the focus of the present work is rather on their interplay, i.e. on the way different kinds of stabilizing interactions (salt bridges, H-bonds, anion–π interactions, π–π stacking, solvent effects, etc.) dialogue among themselves. What happens if we tune the strengths of salt bridges by altering the basicity of the anion? What if we change the geometry of the charged group? How does shifting towards more hydrophilic or hydrophobic anions impact the stability of complexes in water? What happens in the solid state? Will aromatic anions go for a π–π stacking or an anion–π interaction mode and do they all behave in the same manner? Does the host/guest size make any difference? What if we play with regiochemistry: will one of the isomers be selectively recognized? Here we present a case study featuring the tetrazine-based ligands L1 and L2 and a series of selected organic anions; potentiometric, NMR, and XRD data and in silico simulations are employed to render such a complex picture.Financial support from the Italian MIUR (project 2015MP34H3) and from the Spanish MINECO (project MAT2014-60104-C2-2-R) is gratefully acknowledged

    Anion-π and lone pair-π interactions with s-tetrazine-based ligands

    Get PDF
    Most of traditional and contemporary interest in s-tetrazine derivatives focuses onto their redox properties, reactivity and energy density. In recent times, however, an increasing number of reports highlighted the possible usefulness of the s-tetrazine moiety as a binding site for anionic and electron rich species, according to the high and positive quadrupolar moment of this heterocycle and the consequent strength of anion-π and lone pair-π interactions. Herein, after giving a quick perspective on s-tetrazine properties and on how they foster these types of π interactions, we present statistical and critical examination of the available structural data, doing justice to the debated topic of the existence and directionality of anion- and lone pair-π interactions. Finally, available literature material concerning the usage of s-tetrazine as supramolecular binding site in solution, i.e. paving the way to applications such as molecular recognition and sensing, is presented and discussed.Financial support from the Spanish MINECO (project MAT2014- 60104-C2-2-R) and MCIU (RTI2018-101558-B-C21) and from Italian MIUR (project 2015MP34H3) are gratefully acknowledged

    Halide and hydroxide anion binding in water

    Get PDF
    The formation of halide and hydroxide anion complexes with two ligands L1 (3,6-bis(morpholin-4- ylmethyl)-1,2,4,5-tetrazine) and L2 (3,6-bis(morpholin-4-ylethyl)-1,2,4,5-tetrazine) was studied in aqueous solution, by means of potentiometric and ITC procedures. In the solid state, HF2 −, Cl− and Br− complexes of H2L22+ were analysed by single crystal XRD measurements. Further information on the latter was obtained with the use of density functional theory (DFT) calculations in combination with the polarizable continuum model (PCM). The presence of two halide or bifluoride HF2 − (F–H–F−) anions forming anion–π interactions, respectively above and below the ligand tetrazine ring, is the leitmotiv of the [(H2L2)X2] (X = HF2, Cl, Br, I) complexes in the solid state, while hydrogen bonding between the anions and protonated morpholine ligand groups contributes to strengthen the anion–ligand interaction, in particular in the case of Cl− and Br−. In contrast to the solid state, only the anion : ligand complexes of 1 : 1 stoichiometry were found in solution. The stability of these complexes displays the peculiar trend I− > F− > Br− > Cl− which was rationalized in terms of electrostatic, hydrogen bond, anion–π interactions and solvent effects. DFT calculations performed on [(H2L2)X]+ (X = F, Cl, Br, I) in PCM water suggested that the ligand assumes a U-shaped conformation to form one anion–π and two salt bridge interactions with the included anions and furnished structural information to interpret the solvation effects affecting complex formation. The formation of hydroxide anion complexes with neutral (not protonated) L1 and L2 molecules represents an unprecedented case in water. The stability of the [L(OH)]− (L = L1, L2) complexes is comparable to or higher than the stability of halide complexes with protonated ligand molecules, their formation being promoted by largely favourable enthalpic contributions that prevail over unfavourable entropic changes.Financial support from the Italian MIUR (project 2015MP34H3) and from the Spanish MINECO (project MAT2014-60104-C2-2-R) is gratefully acknowledged. The centre of instrumental facilities, STI, of the University of JaĂ©n is acknowledged for technical assistance. FP acknowledges the Department of Applied Chemistry of the Graduate School of Engineering of Tohoku University for financial support

    Fitting the integrated Spectral Energy Distributions of Galaxies

    Full text link
    Fitting the spectral energy distributions (SEDs) of galaxies is an almost universally used technique that has matured significantly in the last decade. Model predictions and fitting procedures have improved significantly over this time, attempting to keep up with the vastly increased volume and quality of available data. We review here the field of SED fitting, describing the modelling of ultraviolet to infrared galaxy SEDs, the creation of multiwavelength data sets, and the methods used to fit model SEDs to observed galaxy data sets. We touch upon the achievements and challenges in the major ingredients of SED fitting, with a special emphasis on describing the interplay between the quality of the available data, the quality of the available models, and the best fitting technique to use in order to obtain a realistic measurement as well as realistic uncertainties. We conclude that SED fitting can be used effectively to derive a range of physical properties of galaxies, such as redshift, stellar masses, star formation rates, dust masses, and metallicities, with care taken not to over-interpret the available data. Yet there still exist many issues such as estimating the age of the oldest stars in a galaxy, finer details ofdust properties and dust-star geometry, and the influences of poorly understood, luminous stellar types and phases. The challenge for the coming years will be to improve both the models and the observational data sets to resolve these uncertainties. The present review will be made available on an interactive, moderated web page (sedfitting.org), where the community can access and change the text. The intention is to expand the text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics & Space Scienc

    Observation of exclusive DVCS in polarized electron beam asymmetry measurements

    Full text link
    We report the first results of the beam spin asymmetry measured in the reaction e + p -> e + p + gamma at a beam energy of 4.25 GeV. A large asymmetry with a sin(phi) modulation is observed, as predicted for the interference term of Deeply Virtual Compton Scattering and the Bethe-Heitler process. The amplitude of this modulation is alpha = 0.202 +/- 0.028. In leading-order and leading-twist pQCD, the alpha is directly proportional to the imaginary part of the DVCS amplitude.Comment: 6 pages, 5 figure

    Complete measurement of three-body photodisintegration of 3He for photon energies between 0.35 and 1.55 GeV

    Full text link
    The three-body photodisintegration of 3He has been measured with the CLAS detector at Jefferson Lab, using tagged photons of energies between 0.35 GeV and 1.55 GeV. The large acceptance of the spectrometer allowed us for the first time to cover a wide momentum and angular range for the two outgoing protons. Three kinematic regions dominated by either two- or three-body contributions have been distinguished and analyzed. The measured cross sections have been compared with results of a theoretical model, which, in certain kinematic ranges, have been found to be in reasonable agreement with the data.Comment: 22 pages, 25 eps figures, 2 tables, submitted to PRC. Modifications: removed 2 figures, improvements on others, a few minor modifications to the tex

    A Kinematically Complete Measurement of the Proton Structure Function F2 in the Resonance Region and Evaluation of Its Moments

    Get PDF
    We measured the inclusive electron-proton cross section in the nucleon resonance region (W < 2.5 GeV) at momentum transfers Q**2 below 4.5 (GeV/c)**2 with the CLAS detector. The large acceptance of CLAS allowed for the first time the measurement of the cross section in a large, contiguous two-dimensional range of Q**2 and x, making it possible to perform an integration of the data at fixed Q**2 over the whole significant x-interval. From these data we extracted the structure function F2 and, by including other world data, we studied the Q**2 evolution of its moments, Mn(Q**2), in order to estimate higher twist contributions. The small statistical and systematic uncertainties of the CLAS data allow a precise extraction of the higher twists and demand significant improvements in theoretical predictions for a meaningful comparison with new experimental results.Comment: revtex4 18 pp., 12 figure
    • 

    corecore