7 research outputs found

    Analycity and smoothing effect for the coupled system of equations of Korteweg - de Vries type with a single point singularity

    Full text link
    We study that a solution of the initial value problem associated for the coupled system of equations of Korteweg - de Vries type which appears as a model to describe the strong interaction of weakly nonlinear long waves, has analyticity in time and smoothing effect up to real analyticity if the initial data only has a single point singularity at $x=0.

    Genomics and epidemiology for gastric adenocarcinomas (GE4GAC): a Brazilian initiative to study gastric cancer

    Get PDF
    Abstract Gastric cancer (GC) is the fifth most common type of cancer worldwide with high incidences in Asia, Central, and South American countries. This patchy distribution means that GC studies are neglected by large research centers from developed countries. The need for further understanding of this complex disease, including the local importance of epidemiological factors and the rich ancestral admixture found in Brazil, stimulated the implementation of the GE4GAC project. GE4GAC aims to embrace epidemiological, clinical, molecular and microbiological data from Brazilian controls and patients with malignant and pre-malignant gastric disease. In this letter, we summarize the main goals of the project, including subject and sample accrual and current findings

    Insensitizing controls for a phase field system

    No full text
    In this paper, a nonlinear parabolic system modeling phase field phenomena is considered. This system consists of two coupled parabolic equations, the first one describes the temperature of the material and the second one describes a phase field function. Under small perturbations of the initial data, we study the existence of controls insensitizing the phase field function and acting only on the temperature equation. This problem is equivalent to the null controllability of a parabolic system, which is studied by means of duality arguments, Carleman estimates, and fixed point theorems. © 2016 Elsevier Ltd. All rights reserved.In this paper, a nonlinear parabolic system modeling phase field phenomena is considered. This system consists of two coupled parabolic equations, the first one describes the temperature of the material and the second one describes a phase field function. Under small perturbations of the initial data, we study the existence of controls insensitizing the phase field function and acting only on the temperature equation. This problem is equivalent to the null controllability of a parabolic system, which is studied by means of duality arguments, Carleman estimates, and fixed point theorems.14312013

    An analysis of a mathematical model describing the geographic spread of dengue disease

    No full text
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOWe consider a system of nonlinear partial differential equations corresponding to a generalization of a mathematical model for geographical spreading of dengue disease proposed in the article by Maidana and Yang (2008) [5]. As in that article, the mosquito population is divided into subpopulations: winged form (mature female mosquitoes) and aquatic form (comprising eggs, larvae and pupae); the human population is divided into the subpopulations: susceptible, infected and removed (or immune). On the other hand, differently from the work by Maidana and Yang, who considered just the one dimensional case with constant coefficients, in the present we allow higher spatial dimensions and also parameters depending on space and time. This last generalization is done to cope with possible abiotic effects as variations in temperature, humidity, wind velocity, carrier capacities, and so on; thus, the results hold for more realistic situations. Moreover, we also consider the effects of additional control terms. We perform a rigorous mathematical analysis and present a result on existence and uniqueness of solutions of the problem; furthermore, we obtain estimates of the solution in terms of certain norms of the given parameters of the problem. This kind of result is important for the analysis of optimal control problems with the given dynamics; to exemplify their utility, we also briefly describe how they can be used to show the existence of optimal controls that minimize a given optimality criteria. (C) 2016 Elsevier Inc. All rights reserved.We consider a system of nonlinear partial differential equations corresponding to a generalization of a mathematical model for geographical spreading of dengue disease proposed in the article by Maidana and Yang (2008) [5]. As in that article, the mosquito population is divided into subpopulations: winged form (mature female mosquitoes) and aquatic form (comprising eggs, larvae and pupae); the human population is divided into the subpopulations: susceptible, infected and removed (or immune). On the other hand, differently from the work by Maidana and Yang, who considered just the one dimensional case with constant coefficients, in the present we allow higher spatial dimensions and also parameters depending on space and time. This last generalization is done to cope with possible abiotic effects as variations in temperature, humidity, wind velocity, carrier capacities, and so on; thus, the results hold for more realistic situations. Moreover, we also consider the effects of additional control terms. We perform a rigorous mathematical analysis and present a result on existence and uniqueness of solutions of the problem; furthermore, we obtain estimates of the solution in terms of certain norms of the given parameters of the problem. This kind of result is important for the analysis of optimal control problems with the given dynamics; to exemplify their utility, we also briefly describe how they can be used to show the existence of optimal controls that minimize a given optimality criteria.4441298325FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO2007/06638-6; 2013/22328-8; 2009/15098-0; 2012/15379-2305467/2011-

    Analyticity and smoothing effect for the coupled system of equations of Korteweg-de vries type with a single point singularity

    No full text
    Using Bourgain spaces and the generator of dilation P=3t ∂ t +x ∂ x , which almost commutes with the linear Korteweg-de Vries operator, we show that a solution of the initial value problem associated for the coupled system of equations of Korteweg-de Vries type which appears as a model to describe the strong interaction of weakly nonlinear long waves, has an analyticity in time and a smoothing effect up to real analyticity if the initial data only have a single point singularity at x=0

    ATLANTIC BIRD TRAITS: a data set of bird morphological traits from the Atlantic forests of South America

    Get PDF
    Scientists have long been trying to understand why the Neotropical region holds the highest diversity of birds on Earth. Recently, there has been increased interest in morphological variation between and within species, and in how climate, topography, and anthropogenic pressures may explain and affect phenotypic variation. Because morphological data are not always available for many species at the local or regional scale, we are limited in our understanding of intra- and interspecies spatial morphological variation. Here, we present the ATLANTIC BIRD TRAITS, a data set that includes measurements of up to 44 morphological traits in 67,197 bird records from 2,790 populations distributed throughout the Atlantic forests of South America. This data set comprises information, compiled over two centuries (1820–2018), for 711 bird species, which represent 80% of all known bird diversity in the Atlantic Forest. Among the most commonly reported traits are sex (n = 65,717), age (n = 63,852), body mass (n = 58,768), flight molt presence (n = 44,941), molt presence (n = 44,847), body molt presence (n = 44,606), tail length (n = 43,005), reproductive stage (n = 42,588), bill length (n = 37,409), body length (n = 28,394), right wing length (n = 21,950), tarsus length (n = 20,342), and wing length (n = 18,071). The most frequently recorded species are Chiroxiphia caudata (n = 1,837), Turdus albicollis (n = 1,658), Trichothraupis melanops (n = 1,468), Turdus leucomelas (n = 1,436), and Basileuterus culicivorus (n = 1,384). The species recorded in the greatest number of sampling localities are Basileuterus culicivorus (n = 243), Trichothraupis melanops (n = 242), Chiroxiphia caudata (n = 210), Platyrinchus mystaceus (n = 208), and Turdus rufiventris (n = 191). ATLANTIC BIRD TRAITS (ABT) is the most comprehensive data set on measurements of bird morphological traits found in a biodiversity hotspot; it provides data for basic and applied research at multiple scales, from individual to community, and from the local to the macroecological perspectives. No copyright or proprietary restrictions are associated with the use of this data set. Please cite this data paper when the data are used in publications or teaching and educational activities. © 2019 The Authors. Ecology © 2019 The Ecological Society of Americ

    ATLANTIC BIRD TRAITS

    No full text
    Scientists have long been trying to understand why the Neotropical region holds the highest diversity of birds on Earth. Recently, there has been increased interest in morphological variation between and within species, and in how climate, topography, and anthropogenic pressures may explain and affect phenotypic variation. Because morphological data are not always available for many species at the local or regional scale, we are limited in our understanding of intra- and interspecies spatial morphological variation. Here, we present the ATLANTIC BIRD TRAITS, a data set that includes measurements of up to 44 morphological traits in 67,197 bird records from 2,790 populations distributed throughout the Atlantic forests of South America. This data set comprises information, compiled over two centuries (1820–2018), for 711 bird species, which represent 80% of all known bird diversity in the Atlantic Forest. Among the most commonly reported traits are sex (n = 65,717), age (n = 63,852), body mass (n = 58,768), flight molt presence (n = 44,941), molt presence (n = 44,847), body molt presence (n = 44,606), tail length (n = 43,005), reproductive stage (n = 42,588), bill length (n = 37,409), body length (n = 28,394), right wing length (n = 21,950), tarsus length (n = 20,342), and wing length (n = 18,071). The most frequently recorded species are Chiroxiphia caudata (n = 1,837), Turdus albicollis (n = 1,658), Trichothraupis melanops (n = 1,468), Turdus leucomelas (n = 1,436), and Basileuterus culicivorus (n = 1,384). The species recorded in the greatest number of sampling localities are Basileuterus culicivorus (n = 243), Trichothraupis melanops (n = 242), Chiroxiphia caudata (n = 210), Platyrinchus mystaceus (n = 208), and Turdus rufiventris (n = 191). ATLANTIC BIRD TRAITS (ABT) is the most comprehensive data set on measurements of bird morphological traits found in a biodiversity hotspot; it provides data for basic and applied research at multiple scales, from individual to community, and from the local to the macroecological perspectives. No copyright or proprietary restrictions are associated with the use of this data set. Please cite this data paper when the data are used in publications or teaching and educational activities. © 2019 The Authors. Ecology © 2019 The Ecological Society of Americ
    corecore