8 research outputs found

    Neurophysiology of male sexual arousal—Behavioral perspective

    Get PDF
    In the presented review, we analyzed the physiology of male sexual arousal and its relation to the motivational aspects of this behavior. We highlighted the distinction between these processes based on observable physiological and behavioral parameters. Thus, we proposed the experimentally applicable differentiation between sexual arousal (SA) and sexual motivation (SM). We propose to define sexual arousal as an overall autonomic nervous system response leading to penile erection, triggered selectively by specific sexual cues. These autonomic processes include both spinal and supraspinal neuronal networks, activated by sensory pathways including information from sexual partner and sexual context, as well as external and internal genital organs. To avoid misinterpretation of experimental data, we also propose to precise the term “sexual motivation” as all actions performed by the individual that increase the probability of sexual interactions or increase the probability of exposition to sexual context cues. Neuronal structures such as the amygdala, bed nucleus of stria terminalis, hypothalamus, nucleus raphe, periaqueductal gray, and nucleus paragigantocellularis play crucial roles in controlling the level of arousal and regulating peripheral responses via specific autonomic effectors. On the highest level of CNS, the activity of cortical structures involved in the regulation of the autonomic nervous system, such as the insula and anterior cingulate cortex, can visualize an elevated level of SA in both animal and human brains. From a preclinical perspective, we underlie the usefulness of the non-contact erection test (NCE) procedure in understanding factors influencing sexual arousal, including studies of sexual preference in animal models. Taken together results obtained by different methods, we wanted to focus attention on neurophysiological aspects that are distinctly related to sexual arousal and can be used as an objective parameter, leading to higher translational transparency between basic, preclinical, and clinical studies

    The SARS-CoV-2 Spike protein has a broad tropism for mammalian ACE2 proteins.

    No full text
    SARS Coronavirus 2 (SARS-CoV-2) emerged in late 2019, leading to the Coronavirus Disease 2019 (COVID-19) pandemic that continues to cause significant global mortality in human populations. Given its sequence similarity to SARS-CoV, as well as related coronaviruses circulating in bats, SARS-CoV-2 is thought to have originated in Chiroptera species in China. However, whether the virus spread directly to humans or through an intermediate host is currently unclear, as is the potential for this virus to infect companion animals, livestock, and wildlife that could act as viral reservoirs. Using a combination of surrogate entry assays and live virus, we demonstrate that, in addition to human angiotensin-converting enzyme 2 (ACE2), the Spike glycoprotein of SARS-CoV-2 has a broad host tropism for mammalian ACE2 receptors, despite divergence in the amino acids at the Spike receptor binding site on these proteins. Of the 22 different hosts we investigated, ACE2 proteins from dog, cat, and cattle were the most permissive to SARS-CoV-2, while bat and bird ACE2 proteins were the least efficiently used receptors. The absence of a significant tropism for any of the 3 genetically distinct bat ACE2 proteins we examined indicates that SARS-CoV-2 receptor usage likely shifted during zoonotic transmission from bats into people, possibly in an intermediate reservoir. Comparison of SARS-CoV-2 receptor usage to the related coronaviruses SARS-CoV and RaTG13 identified distinct tropisms, with the 2 human viruses being more closely aligned. Finally, using bioinformatics, structural data, and targeted mutagenesis, we identified amino acid residues within the Spike-ACE2 interface, which may have played a pivotal role in the emergence of SARS-CoV-2 in humans. The apparently broad tropism of SARS-CoV-2 at the point of viral entry confirms the potential risk of infection to a wide range of companion animals, livestock, and wildlife

    In Vitro Fracture Resistance of Endodontically Treated Premolar Teeth Restored with Prefabricated and Custom-Made Fibre-Reinforced Composite Posts

    No full text
    (1) Background: The study aimed to compare and analyse the differences between the features of prefabricated fibre-reinforced composite (FRC) posts and custom-made FRC posts in the form of a tape and confirm the necessity of using FRC posts in teeth treated endodontically in comparison to direct reconstruction with a composite material. (2) Methods: Sixty premolars after endodontic treatment were used. The teeth were divided into four groups (n—15). Group 1: teeth with embedded prefabricated posts (Mirafit White); group 2: teeth with embedded prefabricated posts (Rebilda); group 3 teeth with embedded custom-made posts in the form of a tape (EverStick); group 4: teeth without a post restored with composite material. The compressive strength of the teeth was tested using the Instron-5944 testing machine until the sample broke. The crystal structure of the investigated posts was detected with the X-ray diffractometer (3) Results: During the experiment, the maximum values of forces at which the damage of the restored premolar teeth after endodontic treatment occurred were obtained. The best results were obtained for teeth rebuilt with Rebilda Posts (1119 N), while teeth with cemented Mirafit White posts were the weakest (968 N). Teeth without an embedded FRC post, rebuilt only with light-cured composite material, obtained the lowest value—859 N. (4) Conclusions: The use of FRC posts increases the resistance to damage of an endodontically treated tooth when compared to direct restoration with light-cured composite material

    Two-photon absorption of Tl 1-x

    No full text
    Novel materials for the infrared two-photon absorption — Tl1-xIn1-xSnxSe2 single crystals (x = 0.1,0.2) were grown. Two-photon absorption (TPA) was studied at CO2 laser wave-length 9.4μm with pulse duration 1μs. The studies were performed at different temperatures and for the nanocrystallite sizes varying within the 7–200 nm. The studies have shown that the TPA may be enhanced during the decrease of the nanocrystallite sizes below 50–60 nm. There exists also some critical x value at which the TPA value begin substantially to increase. The studied nanocrystallites are relatively stable to the infrared laser treatment and are not hygroscopic which allow to use them in different IR optoelectronic devices

    The SARS-CoV-2 Spike protein has a broad tropism for mammalian ACE2 proteins.

    No full text
    SARS Coronavirus 2 (SARS-CoV-2) emerged in late 2019, leading to the Coronavirus Disease 2019 (COVID-19) pandemic that continues to cause significant global mortality in human populations. Given its sequence similarity to SARS-CoV, as well as related coronaviruses circulating in bats, SARS-CoV-2 is thought to have originated in Chiroptera species in China. However, whether the virus spread directly to humans or through an intermediate host is currently unclear, as is the potential for this virus to infect companion animals, livestock, and wildlife that could act as viral reservoirs. Using a combination of surrogate entry assays and live virus, we demonstrate that, in addition to human angiotensin-converting enzyme 2 (ACE2), the Spike glycoprotein of SARS-CoV-2 has a broad host tropism for mammalian ACE2 receptors, despite divergence in the amino acids at the Spike receptor binding site on these proteins. Of the 22 different hosts we investigated, ACE2 proteins from dog, cat, and cattle were the most permissive to SARS-CoV-2, while bat and bird ACE2 proteins were the least efficiently used receptors. The absence of a significant tropism for any of the 3 genetically distinct bat ACE2 proteins we examined indicates that SARS-CoV-2 receptor usage likely shifted during zoonotic transmission from bats into people, possibly in an intermediate reservoir. Comparison of SARS-CoV-2 receptor usage to the related coronaviruses SARS-CoV and RaTG13 identified distinct tropisms, with the 2 human viruses being more closely aligned. Finally, using bioinformatics, structural data, and targeted mutagenesis, we identified amino acid residues within the Spike-ACE2 interface, which may have played a pivotal role in the emergence of SARS-CoV-2 in humans. The apparently broad tropism of SARS-CoV-2 at the point of viral entry confirms the potential risk of infection to a wide range of companion animals, livestock, and wildlife
    corecore