178 research outputs found

    Bleeding from gastrointestinal angioectasias is not related to bleeding disorders - a case control study

    Get PDF
    n/aOriginal Publication:Charlotte M Hoog, Olle Brostrom, Tomas Lindahl, Andreas Hillarp, Gerd Larfars and Urban Sjoqvist, Bleeding from gastrointestinal angioectasias is not related to bleeding disorders - a case control study, 2010, BMC GASTROENTEROLOGY, (10), 113.http://dx.doi.org/10.1186/1471-230X-10-113Licensee: BioMed Centralhttp://www.biomedcentral.com

    The Oncoprotein EVI1 and the DNA Methyltransferase Dnmt3 Co-Operate in Binding and De Novo Methylation of Target DNA

    Get PDF
    EVI1 has pleiotropic functions during murine embryogenesis and its targeted disruption leads to prenatal death by severely affecting the development of virtually all embryonic organs. However, its functions in adult tissues are still unclear. When inappropriately expressed, EVI1 becomes one of the most aggressive oncogenes associated with human hematopoietic and solid cancers. The mechanisms by which EVI1 transforms normal cells are unknown, but we showed recently that EVI1 indirectly upregulates self-renewal and cell-cycling genes by inappropriate methylation of CpG dinucleotides in the regulatory regions of microRNA-124-3 (miR-124-3), leading to the repression of this small gene that controls normal differentiation and cell cycling of somatic cells. We used the regulatory regions of miR-124-3 as a read-out system to investigate how EVI1 induces de novo methylation of DNA. Here we show that EVI1 physically interacts with DNA methyltransferases 3a and 3b (Dnmt3a/b), which are the only de novo DNA methyltransferases identified to date in mouse and man, and that it forms an enzymatically active protein complex that induces de novo DNA methylation in vitro. This protein complex targets and binds to a precise region of miR-124-3 that is necessary for repression of a reporter gene by EVI1. Based on our findings, we propose that in cooperation with Dnmt3a/b EVI1 regulates the methylation of DNA as a sequence-specific mediator of de novo DNA methylation and that inappropriate EVI1 expression contributes to carcinogenesis through improper DNA methylation

    Comparative effectiveness of Anti-IL5 and Anti-IgE biologic classes in patients with severe asthma eligible for both.

    Get PDF
    BACKGROUND: Patients with severe asthma may present with characteristics representing overlapping phenotypes, making them eligible for more than one class of biologic. Our aim was to describe the profile of adult patients with severe asthma eligible for both anti-IgE and anti-IL5/5R and to compare the effectiveness of both classes of treatment in real life. METHODS: This was a prospective cohort study that included adult patients with severe asthma from 22 countries enrolled into the International Severe Asthma registry (ISAR) who were eligible for both anti-IgE and anti-IL5/5R. The effectiveness of anti-IgE and anti-IL5/5R was compared in a 1:1 matched cohort. Exacerbation rate was the primary effectiveness endpoint. Secondary endpoints included long-term-oral corticosteroid (LTOCS) use, asthma-related emergency room (ER) attendance, and hospital admissions. RESULTS: In the matched analysis (n = 350/group), the mean annualized exacerbation rate decreased by 47.1% in the anti-IL5/5R group and 38.7% in the anti-IgE group. Patients treated with anti-IL5/5R were less likely to experience a future exacerbation (adjusted IRR 0.76; 95% CI 0.64, 0.89; p < 0.001) and experienced a greater reduction in mean LTOCS dose than those treated with anti-IgE (37.44% vs. 20.55% reduction; p = 0.023). There was some evidence to suggest that patients treated with anti-IL5/5R experienced fewer asthma-related hospitalizations (IRR 0.64; 95% CI 0.38, 1.08), but not ER visits (IRR 0.94, 95% CI 0.61, 1.43). CONCLUSIONS: In real life, both anti-IgE and anti-IL5/5R improve asthma outcomes in patients eligible for both biologic classes; however, anti-IL5/5R was superior in terms of reducing asthma exacerbations and LTOCS use

    Evidence-based assessment of antiosteoporotic activity of petroleum-ether extract of Cissus quadrangularis Linn. on ovariectomy-induced osteoporosis

    Get PDF
    The increasing incidence of postmenopausal osteoporosis and its related fractures have become global health issues in the recent days. Postmenopausal osteoporosis is the most frequent metabolic bone disease; it is characterized by a rapid loss of mineralized bone tissue. Hormone replacement therapy has proven efficacious in preventing bone loss but not desirable to many women due to its side-effects. Therefore we are in need to search the natural compounds for a treatment of postmenopausal symptoms in women with no toxic effects. In the present study, we have evaluated the effect of petroleum-ether extract of Cissus quadrangularis Linn. (CQ), a plant used in folk medicine, on an osteoporotic rat model developed by ovariectomy. In this experiment, healthy female Wistar rats were divided into four groups of six animals each. Group 1 was sham operated. All the remaining groups were ovariectomized. Group 2 was fed with an equivolume of saline and served as ovariectomized control (OVX). Groups 3 and 4 were orally treated with raloxifene (5.4 mg/kg) and petroleum-ether extract of CQ (500 mg/kg), respectively, for 3 months. The findings were assessed on the basis of animal weight, morphology of femur, and histochemical localization of alkaline phosphatase (ALP) (an osteoblastic marker) and tartrate-resistant acid phosphatase (TRAP) (an osteoclastic marker) in upper end of femur. The study revealed for the first time that the petroleum-ether extract of CQ reduced bone loss, as evidenced by the weight gain in femur, and also reduced the osteoclastic activity there by facilitating bone formation when compared to the OVX group. The osteoclastic activity was confirmed by TRAP staining, and the bone formation was assessed by ALP staining in the femur sections. The color intensity of TRAP and ALP enzymes from the images were evaluated by image analysis software developed locally. The effect of CQ was found to be effective on both enzymes, and it might be a potential candidate for prevention and treatment of postmenopausal osteoporosis. The biological activity of CQ on bone may be attributed to the phytogenic steroids present in it

    The 100 most cited articles investigating the radiological staging of oesophageal and junctional cancer: a bibliometric analysis

    Get PDF
    Objectives Accurate staging of oesophageal cancer (OC) is vital. Bibliometric analysis highlights key topics and publications that have shaped understanding of a subject. The 100 most cited articles investigating radiological staging of OC are identified. Methods The Thomas Reuters Web of Science database with search terms including “CT, PET, EUS, oesophageal and gastro-oesophageal junction cancer” was used to identify all English language, full-script articles. The 100 most cited articles were further analysed by topic, journal, author, year and institution. Results A total of 5,500 eligible papers were returned. The most cited paper was Flamen et al. (n = 306), investigating the utility of positron emission tomography (PET) for the staging of patients with potentially operable OC. The most common research topic was accuracy of staging investigations (n = 63). The article with the highest citation rate (38.00), defined as the number of citations divided by the number of complete years published, was Tixier et al. investigating PET texture analysis to predict treatment response to neo-adjuvant chemo-radiotherapy, cited 114 times since publication in 2011. Conclusion This bibliometric analysis has identified key publications regarded as important in radiological OC staging. Articles with the highest citation rates all investigated PET imaging, suggesting this modality could be the focus of future research

    DNA glycosylases: in DNA repair and beyond

    Get PDF
    The base excision repair machinery protects DNA in cells from the damaging effects of oxidation, alkylation, and deamination; it is specialized to fix single-base damage in the form of small chemical modifications. Base modifications can be mutagenic and/or cytotoxic, depending on how they interfere with the template function of the DNA during replication and transcription. DNA glycosylases play a key role in the elimination of such DNA lesions; they recognize and excise damaged bases, thereby initiating a repair process that restores the regular DNA structure with high accuracy. All glycosylases share a common mode of action for damage recognition; they flip bases out of the DNA helix into a selective active site pocket, the architecture of which permits a sensitive detection of even minor base irregularities. Within the past few years, it has become clear that nature has exploited this ability to read the chemical structure of DNA bases for purposes other than canonical DNA repair. DNA glycosylases have been brought into context with molecular processes relating to innate and adaptive immunity as well as to the control of DNA methylation and epigenetic stability. Here, we summarize the key structural and mechanistic features of DNA glycosylases with a special focus on the mammalian enzymes, and then review the evidence for the newly emerging biological functions beyond the protection of genome integrity
    corecore