18,837 research outputs found

    Trapping and Cooling a mirror to its quantum mechanical ground state

    Full text link
    We propose a technique aimed at cooling a harmonically oscillating mirror to its quantum mechanical ground state starting from room temperature. Our method, which involves the two-sided irradiation of the vibrating mirror inside an optical cavity, combines several advantages over the two-mirror arrangements being used currently. For comparable parameters the three-mirror configuration provides a stiffer trap for the oscillating mirror. Furthermore it prevents bistability from limiting the use of higher laser powers for mirror trapping, and also partially does so for mirror cooling. Lastly, it improves the isolation of the mirror from classical noise so that its dynamics are perturbed mostly by the vacuum fluctuations of the optical fields. These improvements are expected to bring the task of achieving ground state occupation for the mirror closer to completion.Comment: 5 pages, 1 figur

    Scanning probe imaging of coexistent ferromagnetism and ferroelectricity at room temperature

    Full text link
    Room temperature coexistence of ferromagnetism and ferroelectricity in a thin film of a novel material of nominal composition PbTi0.5Fe0.5O3-d is probed by standard ferroelectric and ferromagnetic hysteresis loop measurements and by scanning probe microscopy of various kinds. Both magnetic domains and ferroelectric domains are observed in the same spatial region of the material, implying phase coexistence in this system. For both order parameters, sample morphology strongly affects roughness of the domain walls.Comment: 15 pages, 5 figure

    Repeating Spatial-Temporal Motifs of CA3 Activity Dependent on Engineered Inputs from Dentate Gyrus Neurons in Live Hippocampal Networks.

    Get PDF
    Anatomical and behavioral studies, and in vivo and slice electrophysiology of the hippocampus suggest specific functions of the dentate gyrus (DG) and the CA3 subregions, but the underlying activity dynamics and repeatability of information processing remains poorly understood. To approach this problem, we engineered separate living networks of the DG and CA3 neurons that develop connections through 51 tunnels for axonal communication. Growing these networks on top of an electrode array enabled us to determine whether the subregion dynamics were separable and repeatable. We found spontaneous development of polarized propagation of 80% of the activity in the native direction from DG to CA3 and different spike and burst dynamics for these subregions. Spatial-temporal differences emerged when the relationships of target CA3 activity were categorized with to the number and timing of inputs from the apposing network. Compared to times of CA3 activity when there was no recorded tunnel input, DG input led to CA3 activity bursts that were 7× more frequent, increased in amplitude and extended in temporal envelope. Logistic regression indicated that a high number of tunnel inputs predict CA3 activity with 90% sensitivity and 70% specificity. Compared to no tunnel input, patterns of >80% tunnel inputs from DG specified different patterns of first-to-fire neurons in the CA3 target well. Clustering dendrograms revealed repeating motifs of three or more patterns at up to 17 sites in CA3 that were importantly associated with specific spatial-temporal patterns of tunnel activity. The number of these motifs recorded in 3 min was significantly higher than shuffled spike activity and not seen above chance in control networks in which CA3 was apposed to CA3 or DG to DG. Together, these results demonstrate spontaneous input-dependent repeatable coding of distributed activity in CA3 networks driven by engineered inputs from DG networks. These functional configurations at measured times of activation (motifs) emerge from anatomically accurate feed-forward connections from DG through tunnels to CA3

    Spectroscopy of Hadrons with b Quarks from Lattice NRQCD

    Full text link
    Preliminary results from an extensive lattice calculation of the B, B_c, and \Upsilon spectrum at quenched \beta = 6.0 are presented. The study includes radially and orbitally excited mesons, and baryons containing b quarks. The b quarks are formulated using NRQCD; for light and c quarks, a tadpole-improved clover action is used.Comment: talk given at LATTICE98(heavyqk), 3 pages LaTeX, 2 Postscript figure

    Hamiltonian chaos in a coupled BEC -- optomechanical cavity system

    Full text link
    We study a hybrid optomechanical system consisting of a Bose-Einstein condensate (BEC) trapped inside a single-mode optical cavity with a moving end-mirror. The intracavity light field has a dual role: it excites a momentum side-mode of the condensate, and acts as a nonlinear spring that couples the vibrating mirror to that collective density excitation. We present the dynamics in a regime where the intracavity optical field, the mirror, and the side-mode excitation all display bistable behavior. In this regime we find that the dynamics of the system exhibits Hamiltonian chaos for appropriate initial conditions.Comment: 5 figure

    Molecular beam epitaxial growth of high-quality InSb on InP and GaAs substrates

    Get PDF
    Epitaxial layers of InSb were grown on InP and GaAs substrates by molecular beam epitaxy. The dependence of the epilayer quality on flux ratio, J sub Sb4/J sub In, was studied. Deviation from an optimum value of J sub Sb4/J sub In (approx. 2) during growth led to deterioration in the surface morphology and the electrical and crystalline qualities of the films. Room temperature electron mobilities as high as 70,000 and 53,000 sq cm /V-s were measured in InSb layers grown on InP and GaAs substrates, respectively. Unlike the previous results, the conductivity in these films is n-type even at T = 13 K, and no degradation of the electron mobility due to the high density of dislocations was observed. The measured electron mobilities (and carrier concentrations) at 77 K in InSb layers grown on InP and GaAs substrates are 110,000 sq cm/V-s (3 x 10(15) cm(-3)) and 55,000 sq cm/V-s (4.95 x 10(15) cm(-3)), respectively, suggesting their application to electronic devices at cryogenic temperatures

    Metastable states of a flux line lattice studied by transport and Small Angle Neutron Scattering

    Full text link
    Flux Lines Lattice (FLL) states have been studied using transport measurements and Small Angle Neutron Scattering in low Tc_c materials. In Pb-In, the bulk dislocations in the FLL do not influence the transport properties. In Fe doped NbSe2_{2}, transport properties can differ after a Field Cooling (FC) or a Zero Field Cooling (ZFC) procedure, as previously reported. The ZFC FLL is found ordered with narrow Bragg Peaks and is linked to a linear V(I) curve and to a superficial critical current. The FC FLL pattern exhibits two Bragg peaks and the corresponding V(I) curve shows a S-shape. This can be explained by the coexistence of two ordered FLL slightly tilted from the applied field direction by different superficial currents. These currents are wiped out when the transport current is increased.Comment: accepted for publication in Phys. Rev.

    An electron Talbot interferometer

    Full text link
    The Talbot effect, in which a wave imprinted with transverse periodicity reconstructs itself at regular intervals, is a diffraction phenomenon that occurs in many physical systems. Here we present the first observation of the Talbot effect for electron de Broglie waves behind a nanofabricated transmission grating. This was thought to be difficult because of Coulomb interactions between electrons and nanostructure gratings, yet we were able to map out the entire near-field interference pattern, the "Talbot carpet", behind a grating. We did this using a Talbot interferometer, in which Talbot interference fringes from one grating are moire'-filtered by a 2nd grating. This arrangement has served for optical, X-ray, and atom interferometry, but never before for electrons. Talbot interferometers are particularly sensitive to distortions of the incident wavefronts, and to illustrate this we used our Talbot interferometer to measure the wavefront curvature of a weakly focused electron beam. Here we report how this wavefront curvature demagnified the Talbot revivals, and we discuss applications for electron Talbot interferometers.Comment: 5 pages, 5 figures, updated version with abstrac
    corecore