133 research outputs found

    Split-Stirling-cycle displacer linear-electric drive

    Get PDF
    The retrofit of a 1/4-W split-Stirling cooler with a linear driven on the displacer was achieved and its performance characterized. The objective of this work was to demonstrate that a small linear motor could be designed to meet the existing envelope specifications of the cooler and that an electric linear drive on the displacer could improve the cooler's reliability and performance. The paper describes the characteristics of this motor and presents cooler test results

    Launch window analysis of satellites in high eccentricity or large circular orbits

    Get PDF
    Numerical methods and computer programs for studying the stability and evolution of orbits of large eccentricity are presented. Methods for determining launch windows and target dates are developed. Mathematical models are prepared to analyze the characteristics of specific missions

    VIBRATION ANALYSIS OF DRILLING OPERATION

    Get PDF
    Vibrations are produced during any machining process. For drilling operation, analysis of these vibrations plays an important role in order to predict phenomenon of ‘chatter’. This paper emphasizes the analysis of vibration during drilling operation. The output results of analysis are useful to find out amplitude of vibrations produced with respect to drill size and spindle speed for standard rate of recommended feed/min. Analysis is quantified and tabulated as per available machining parameters of ‘THAKUR PELTER DRILLING MACHINE’ which is present in the Workshop of Fr. Conceiceo Rodrigues Institute of Technology, Vashi, Navi Mumbai. The optimum values of spindle speed and feed for maximium amplitude of transverse vibrations with respect to drill size are highlighted in the table and brought to the notice of Workshop Superintendent. The table of formulated results is displayed near this drilling machine

    Fracture in Mode I using a Conserved Phase-Field Model

    Full text link
    We present a continuum phase-field model of crack propagation. It includes a phase-field that is proportional to the mass density and a displacement field that is governed by linear elastic theory. Generic macroscopic crack growth laws emerge naturally from this model. In contrast to classical continuum fracture mechanics simulations, our model avoids numerical front tracking. The added phase-field smoothes the sharp interface, enabling us to use equations of motion for the material (grounded in basic physical principles) rather than for the interface (which often are deduced from complicated theories or empirical observations). The interface dynamics thus emerges naturally. In this paper, we look at stationary solutions of the model, mode I fracture, and also discuss numerical issues. We find that the Griffith's threshold underestimates the critical value at which our system fractures due to long wavelength modes excited by the fracture process.Comment: 10 pages, 5 figures (eps). Added 2 figures and some text. Removed one section (and a figure). To be published in PR

    Diagnostic algorithm for children presenting with epilepsia partialis continua

    Get PDF
    Objective: To characterize a cohort of children with epilepsia partialis continua (EPC) and develop a diagnostic algorithm incorporating key differential diagnoses. / Methods: Children presenting with EPC to a tertiary pediatric neurology center between 2002 and 2019 were characterized. / Results: Fifty‐four children fulfilled EPC criteria. Median age at onset was 7 years (range 0.6‐15), with median follow‐up of 4.3 years (range 0.2‐16). The diagnosis was Rasmussen encephalitis (RE) in 30 of 54 (56%), a mitochondrial disorder in 12 of 54 (22.2%), and magnetic resonance imaging (MRI) lesion‐positive focal epilepsy in 6 of 54 (11.1%). No diagnosis was made in 5 of 54 (9%). Children with mitochondrial disorders developed EPC earlier; each additional year at presentation reduced the odds of a mitochondrial diagnosis by 26% (P = .02). Preceding developmental concerns (odds ratio [OR] 22, P < .001), no seizures prior to EPC (OR 22, P < .001), bilateral slowing on electroencephalogram (EEG) (OR 26, P < .001), and increased cerebrospinal fluid (CSF) protein level (OR 16) predicted a mitochondrial disorder. Asymmetry or hemiatrophy was evident on MRI at presentation with EPC in 18 of 30 (60%) children with RE, and in the remainder at a median of 6 months (range 3‐15) after EPC onset. The first diagnostic test is brain MRI. Hemiatrophy may permit a diagnosis of RE with unilateral clinical and EEG findings. For children in whom a diagnosis of RE cannot be made on first scan but the clinical and radiological presentation resembles RE, repeat imaging every 6 months is recommended to detect progressive unicortical hemiatrophy, and brain biopsy should be considered. Evidence of intrathecal inflammation (oligoclonal bands and raised neopterin) can be supportive. In children with bihemispheric EPC, rapid polymerase gamma testing is recommended and if negative, sequencing mtDNA and whole‐exome sequencing on blood‐derived DNA should be performed. / Significance: Children presenting with EPC due to a mitochondrial disorder show clinical features distinguishing them from RE and structural epilepsies. A diagnostic algorithm for children with EPC will allow targeted investigation and timely diagnosis

    Fascin overexpression promotes neoplastic progression in oral squamous cell carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fascin is a globular actin cross-linking protein, which plays a major role in forming parallel actin bundles in cell protrusions and is found to be associated with tumor cell invasion and metastasis in various type of cancers including oral squamous cell carcinoma (OSCC). Previously, we have demonstrated that fascin regulates actin polymerization and thereby promotes cell motility in K8-depleted OSCC cells. In the present study we have investigated the role of fascin in tumor progression of OSCC.</p> <p>Methods</p> <p>To understand the role of fascin in OSCC development and/or progression, fascin was overexpressed along with vector control in OSCC derived cells AW13516. The phenotype was studied using wound healing, Boyden chamber, cell adhesion, Hanging drop, soft agar and tumorigenicity assays. Further, fascin expression was examined in human OSCC samples (N = 131) using immunohistochemistry and level of its expression was correlated with clinico-pathological parameters of the patients.</p> <p>Results</p> <p>Fascin overexpression in OSCC derived cells led to significant increase in cell migration, cell invasion and MMP-2 activity. In addition these cells demonstrated increased levels of phosphorylated AKT, ERK1/2 and JNK1/2. Our in vitro results were consistent with correlative studies of fascin expression with the clinico-pathological parameters of the OSCC patients. Fascin expression in OSCC showed statistically significant correlation with increased tumor stage (<it>P </it>= 0.041), increased lymph node metastasis (<it>P </it>= 0.001), less differentiation (<it>P </it>= 0.005), increased recurrence (<it>P </it>= 0.038) and shorter survival (<it>P </it>= 0.004) of the patients.</p> <p>Conclusion</p> <p>In conclusion, our results indicate that fascin promotes tumor progression and activates AKT and MAPK pathways in OSCC-derived cells. Further, our correlative studies of fascin expression in OSCC with clinico-pathological parameters of the patients indicate that fascin may prove to be useful in prognostication and treatment of OSCC.</p

    We're in this Together: Sensation of the Host Cell Environment by Endosymbiotic Bacteria

    Get PDF
    Bacteria inhabit diverse environments, including the inside of eukaryotic cells. While a bacterial invader may initially act as a parasite or pathogen, a subsequent mutualistic relationship can emerge in which the endosymbiotic bacteria and their host share metabolites. While the environment of the host cell provides improved stability when compared to an extracellular environment, the endosymbiont population must still cope with changing conditions, including variable nutrient concentrations, the host cell cycle, host developmental programs, and host genetic variation. Furthermore, the eukaryotic host can deploy mechanisms actively preventing a bacterial return to a pathogenic state. Many endosymbionts are likely to use two-component systems (TCSs) to sense their surroundings, and expanded genomic studies of endosymbionts should reveal how TCSs may promote bacterial integration with a host cell. We suggest that studying TCS maintenance or loss may be informative about the evolutionary pathway taken toward endosymbiosis, or even toward endosymbiont-to-organelle conversion.Peer reviewe
    • 

    corecore