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Abstract 1 

Introduction: Prospectively assess cerebral autoregulation and optimal mean arterial pressure 2 

(MAPOPT) using the dynamic relationship between MAP and regional saturation of oxygen 3 

(rSO2) using near-infrared spectroscopy. 4 

Methods: Feasibility study of twenty patients admitted to the intensive care unit following a 5 

cardiac arrest. All patients underwent continuous rSO2 monitoring using the INVOS® cerebral 6 

oximeter.  ICM+® brain monitoring software calculates the cerebral oximetry index (COx) in 7 

real-time which is a moving Pearson correlation coefficient between 30 consecutive, 10-sec 8 

averaged values of MAP and correspond rSO2 signals.  When rSO2 increases with increasing 9 

MAP (COx ≥0.3), cerebral autoregulation is dysfunctional.  Conversely, when rSO2 remains 10 

constant or decreases with increasing MAP (COx <0.3), autoregulation is preserved.   ICM+® 11 

fits a U-shaped curve through the COx values plotted versus MAP.  The MAPOPT is nadir of this 12 

curve.   13 

Results: The median age was 59 years (IQR 54 - 67) and 7 of 20 were female.  The cardiac arrest 14 

was caused by myocardial infarction in 12 (60%) patients.  Nineteen arrests were witnessed and 15 

return of spontaneous circulation occurred in a median of 15.5 minutes (IQR 8 – 33).  Patients 16 

underwent a median of 30 hours (IQR 23 – 46) of monitoring.  COx curves and MAPOPT were 17 

generated in all patients.  The mean overall MAP and MAPOPT were 76 mmHg (SD 10) and 76 18 

mmHg (SD 7), respectively.  MAP was outside of 5 mmHg from MAPOPT in 50% (SD 15) of the 19 

time.  Out of the 7672 5-minute averaged COx measurements, 1182 (15%) were at 0.3 or above, 20 

indicating absence of autoregulation.  Multivariable polynomial fractional regression 21 

demonstrated an increase in COx with increasing temperature (P=0.008).   22 

Conclusions: We demonstrated the feasibility to determine a MAPOPT using cerebral oximetry in 23 

patients after cardiac arrest.   24 

 25 

 26 

 27 

28 
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Introduction 1 

  Hypoxemic-ischemic brain injury (HIBI) is the major cause of death in patients 2 

following cardiac arrest1.  Furthermore, approximately half of those who survive will be left with 3 

an unfavourable neurologic outcome2.  HIBI is characterized by cerebral edema with elevated 4 

intracranial pressure (ICP) and dysfunctional cerebral autoregulation3.  In healthy individuals, 5 

cerebral autoregulation attempts to maintain constant cerebral blood flow (CBF) over a wide 6 

range of mean arterial pressure (MAP).  In HIBI, autoregulation is impaired, with the plateau 7 

becoming narrowed and right-shifted4.  This may have consequences for targeting a specific 8 

MAP threshold in these patients.  If the MAP is below the autoregulatory threshold, additional 9 

ischemia can result, leading to further brain injury.  Conversely, if the MAP above the 10 

autoregulatory threshold, excessive perfusion may lead to increased cerebral edema and 11 

worsening brain injury.  12 

The American Heart Association recommends keeping MAP at 65mmHg or above in all 13 

patients following cardiac arrest5.  However this “one size fits all” philosophy clearly does not 14 

take into consideration intra-subject variability and, moreover, any possible disruption in a 15 

patient’s cerebral autoregulation capacity.  Recently, there has been interest in using the dynamic 16 

fluctuations in MAP on brain regional saturation of oxygen (rSO2) using near-infrared 17 

spectroscopy (NIRS)6,7.  If MAP and rSO2 trend in the same direction (e.g. decreasing MAP 18 

leads to equal reductions in rSO2), then effective cerebral autoregulation is likely severely 19 

compromised.  Conversely, if rSO2 remains constant during changes in MAP then autoregulation 20 

is likely intact.  Over time, a moving correlation coefficient (a value between -1 and +1) between 21 

MAP and rSO2 can be repeatedly calculated.  This is termed the cerebral oximetry index (COx).  22 

A positive or negative COx indicates dysfunction or intact cerebral autoregulation, respectively8.  23 

The MAPOPT can then be identified at the point with the lowest COx7.  This approach has been 24 

applied to two studies in patients after cardiac arrest using differing definitions of intact 25 

autoregulation6,9.  We thus conducted a single center proof-of-concept study to determine if we 26 

could prospectively determine MAPOPT in a cohort of patients admitted after cardiac arrest.  In 27 

addition, we wanted to determine additional feasibility outcomes: patient recruitment rates, 28 

duration of monitoring and adequacy of data capture.  We also sought to assess the percentage of 29 

time of intact autoregulation and the ability to determine MAPOPT.  30 

31 
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Methods 1 

 This is a single-center feasibility proof-of-concept study.  The Research Ethics Board at 2 

the University of British Columbia (H14-02405) approved the protocol and written informed 3 

consent was obtained from patients in a deferred manner.   4 

Patient Inclusion  5 

 We included patients 16 years or older who were admitted following a cardiac arrest who 6 

had a post-resuscitation Glasgow Coma Score of 8 or less.  Patients had to be enrolled within 36 7 

hours of their cardiac arrest and had more than 20 consecutive minutes of spontaneous 8 

circulation following resuscitation.  We excluded patients with a past history of cardiac arrest, 9 

traumatic brain injury, intracerebral hemorrhage or ischemic stroke.  We also excluded patients 10 

where there was no commitment to ongoing support by the medical team.  11 

Patient Management 12 

 All patient care decisions were at the discretion of the treating team.  As per institutional 13 

protocol, patients who have a cardiac arrest from a presumed cardiac cause undergo targeted 14 

temperature management to either 33⁰C or 36⁰C, at the discretion of the attending physician.  15 

This is undertaken with surface cooling using the Artic Sun® Temperature Management System 16 

(Bard Medical, Murray Hill, NJ, USA).  During the time of the study, there was no institutional 17 

temperature management protocol for cardiac arrest from a presumed non-cardiac cause (e.g. 18 

hypoxemia).   19 

 20 

Study site  21 

 Affiliated with the University of British Columbia, the intensive care unit (31 beds) and 22 

coronary care unit (14 beds) manage all of the post cardiac arrest patients at Vancouver General 23 

Hospital.  The ICU and CCU are staffed by fellowship trained intensive care physicians and 24 

cardiologists, respectively.   25 

Neurophysiologic Monitoring 26 

 We monitored brain regional saturation of oxygen (rSO2) bilaterally using the INVOS® 27 

cerebral oximeter (Covidien, Ireland) on the day of admission and continued for up to 48 hours 28 
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after the cardiac arrest.  Invasive blood pressure and rSO2 data were captured in real-time using 1 

ICM+® brain monitoring software (Division of Neurosurgery, Cambridge University).  Daily 2 

during the study, two investigators (DG, MS) measured MCA flow velocity using TCD.   3 

  4 

Statistical methods 5 

Categorical data are summarized as count (percent) and continuous data are summarized 6 

as mean (standard deviation) or median and interquartile range (25th - 75th percentile) if the data 7 

were skewed. We used Stata 10.0 (StataCorp, Texas, USA) for all analyses.  All tests were two-8 

sided and a p-value <0.05 was considered statistically significant.  As this was a proof-of-9 

concept study, no formal sample size calculation was performed.  Twenty patients represented 10 

the maximum number of patients we could recruit with the available resources.  TCD was used 11 

to estimate CPP using the following formula: CPP = MAP x FVd/FVm+1410.  A non-invasive 12 

ICP was then estimated as ICP = MAP – CPP.      13 

Determination of COx and MAPOPT. 14 

ICM+® brain monitoring software calculates both COx and MAPOPT.  COx is a moving 15 

Pearson correlation coefficient between 30 consecutive, 10-sec averaged values of MAP and 16 

corresponding rSO2 signals (with 80% overlap of data)11.  For the purposes of analysis, we 17 

averaged the rSO2, MAP and COx over a 5-minute time period8.  To calculate MAPOPT, ICM+® 18 

divides MAP into bins of 5mmHg and then discards the first and last MAP bins.  MAP bins 19 

which contain <2% of data points are also discarded12.  ICM+® then fits a U-shaped curve 20 

through the COx values plotted versus MAP13.  The MAPOPT is the nadir of this curve.  MAPOPT 21 

was calculated for each 6 hour time period.  Figure 1 demonstrates data capture (MAP, rSO2 and 22 

COx) and the generation of MAPOPT in an individual patient.  We then calculated the difference 23 

between the patients’ actual average MAP (on an hourly basis) and the MAPOPT.  Presence of 24 

cerebral autoregulation was defined a priori as a COx <0.38,14. 25 

Modeling of COx with MAP and temperature  26 

The relationship was assessed visually by plotting COx vs. MAP and COx vs. 27 

temperature for each individual.  For the relationship between COx and MAP, the median and 28 

IQR for COx was calculated for each 5mmHg bin of MAP of each individual.  For the 29 

relationship between COx and temperature, we overlaid the scatterplot with a locally weighted 30 
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scatterplot smoothing function conditioned on the individual.  In order to visually assess the 1 

relationship between COx and temperature across all patients, we used restricted cubic splines.  2 

This relationship was modeled using fractional polynomials.   3 

4 
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Results 1 

 Between December 1st, 2014 and March 27th, 2015, 22 patients were screened and 20 2 

enrolled.  One patient refused and one patient could not be enrolled because the equipment was 3 

being used on another study patient.  Recruitment rate was 5 patients per month.  Overall, the 4 

median age was 59 years (IQR 54 – 67) and 6 of 20 (30%) were female.  The majority of cardiac 5 

arrests were caused by myocardial infarctions (12 of 20, 60%) with 10 of 12 of these patients 6 

undergoing percutaneous coronary intervention.  The arrest was witnessed in 19 of 20 (95%) of 7 

patients and ROSC occurred within a median of 15.5 minutes (8 – 33).  The baseline 8 

characteristics are presented in table 1.  The median time from ROSC until application of 9 

cerebral oximetry monitoring was 16.5 hours (9 – 19).  Patients underwent a median of 30 hours 10 

(23 – 46) of monitoring, with one patient undergoing a total of 72 hours.  The mean ONSD was 11 

5.9mm (0.5) and three patients had an estimated ICP of greater than 20 mmHg using TCD.  All 12 

three of these patients died.  Overall, 11 of 20 patients (55%) died in hospital.  ICU management 13 

characteristics are presented in table 2.  During the first 24 hours, 13 of 20 (60%) of patients 14 

underwent targeted temperature management with a goal temperature of 33⁰C (3 patients) or 15 

36⁰C (10 patients).  For the twelve patients with a presumed cardiac cause of the cardiac arrest, 16 

the mean temperature for the first and second 24 hours were 35.4⁰C (1.4) and 36.1⁰C (1.7), 17 

respectively.  For the 8 patients with a non-cardiac cause arrest, the mean temperature for the 18 

first and second 24 hours were 36.8⁰C (2.3) and 37.5⁰C (1.1), respectively.      19 

Relationship between COx and MAP 20 

Examples of the relationship between COx and MAP for four individual patients over a 21 

6-hour period are presented in figure 2.  There were several patterns that emerged.  The U-22 

shaped relationship (figure 2A) identified a zone of autoregulation.  Some patients maintained 23 

autoregulation throughout the range of observable MAP (figure 2B).  Other patterns included up-24 

sloping (figure 2C) and down-sloping (figure 2D) relationships which might indicate 25 

dysfunctional autoregulation with increasing and decreasing MAP, respectively, or may simply 26 

represent a portion of a U-shaped relationship.  27 

We were able to generate COx curves (e.g. figure 1) for at least one six-hour period in all 28 

twenty patients, including two patients who underwent veno-arterial extracorporeal life support.  29 

A MAPOPT was generated for all 6 hour time periods in 10 patients.  In six patients, there was 1 30 
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missing period and in 3 patients there were two missing periods.  In one patient, 5 of 13 periods 1 

were missing.  The mean overall MAP and MAPOPT were 76 mmHg (10) and 76 mmHg (7), 2 

respectively.  The mean percentage of time where the MAP was outside of 5 mmHg from 3 

MAPOPT was 50% (15).  The MAP was greater than 5 mmHg above MAPOPT a mean of 22% (12) 4 

and greater than 5 mmHg below MAPOPT a mean of 28% (15).  The density distribution of the 5 

difference between actual MAP and MAPOPT is presented in figure 3.  The mean rSO2 was 61% 6 

(11) and mean COx was 0.066 (0.11).  Out of the 7672 5-minute averaged COx measurements, 7 

1182 (15%) were at 0.3 or above.  On a per patient basis, this represents a median of 13% (6 – 8 

19) of time when the prevailing MAP was outside the autoregulatory range.  The median 9 

percentage of time with a COx of 0.3 or above was 18% (7 - 41) in those patients who died 10 

compared to 10% (6 - 13) for those who survived   11 

Relationship between COx and temperature 12 

 Hourly temperature data was recorded in all 20 patients and the relationship between 5-13 

minute COx and hourly temperature is displayed in figure 4.  Multivariable fractional polynomial 14 

regression demonstrated an increase in COx with increasing temperature (P=0.008).    15 

 16 

 17 

 18 

  19 

 20 

 21 

22 
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Discussion  1 

  In this single-centre proof-of-concept feasibility study we demonstrated the feasibility to 2 

use the dynamic relationship between MAP and rSO2 to assess cerebral autoregulation in real-3 

time.  We were able to calculate a MAPOPT in all twenty patients and this was outside of 5 4 

mmHg from the actual MAP for half of the monitoring time.  Furthermore, using a cutoff of COx 5 

less than 0.3, autoregulation was present for the majority of time analyzed.  Hyperthermia was 6 

associated with an increased COx and autoregulation was preserved with hypothermia.   7 

 There has been increasing interest in determining the optimal blood pressure targets 8 

following cardiac arrest.  Although multiple observational studies demonstrating improved 9 

neurologic outcomes associated with higher MAP15–19, these results are not consistent20.  10 

Furthermore, there is marked heterogeneity in these studies in terms of: patients included, 11 

definition of hypotension, and statistical modelling of blood pressure21.  Given the lack of high-12 

quality data22, the American Heart Association recommends keeping MAP at 65mmHg or 13 

greater in all patients following cardiac arrest5.  However, it may be that given the right-shifted 14 

and narrowed zone of autoregulation observed after cardiac arrest3,23, we should be examining 15 

patient-specific blood pressure targets, rather than applying universal thresholds24.   16 

 Patient-specific blood pressure thresholds have been used in patients with traumatic brain 17 

injury (TBI)12, which shares similar pathophysiologic features with HIBI.  Analogous to the 18 

methods used in our study, in patients with TBI, we can use the dynamic relationship between 19 

MAP and either intracranial pressure or brain tissue oxygen to assess autoregulation, and thus 20 

determine MAPOPT
25.  Studies have consistently demonstrated that MAPOPT is often  greater than 21 

80 or 90 mmHg in patients with TBI12,26.  Furthermore, observational data indicate that patients 22 

who are maintained within 5 mmHg of their optimal MAP have decreased mortality and 23 

improved neurological outcomes12.  However, the invasive methods used to determine MAPOPT 24 

may not be routinely practical in patients after cardiac arrest.   25 

 In an attempt to characterize cerebral autoregulation and patient specific MAP targets,  26 

Ameloot and colleagues performed a historical cohort study of 51 cardiac arrest patients who 27 

underwent continuous MAP and cerebral oximetry monitoring for the first 24 hours of their ICU 28 

stay6.  They demonstrated that 35% of patients had disturbed autoregulation as defined where the 29 

slope of a linear regression equation (rSO2%/mmHg) of > 0.05%/mmHg.  In patients with 30 
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preserved autoregulation, MAPOPT was 85 mmHg, similar to the results seen in our study.  1 

Finally, the time under the individual MAPOPT was associated with a small effect on survival 2 

(OR 0.97, 95%CI: 0.96 to 0.99, P=0.02).  In contrast to our study in which the ICM+ ® brain 3 

monitoring software is able to calculate COx in real-time, Ameloot and colleagues 4 

retrospectively calculated COx in order to determine the optimal MAP.  The COx approach has 5 

also been used extensively and validated as a bedside measure of cerebral autoregulation in 6 

stroke14, sepsis27 and subarachnoid hemorrhage28.   7 

 We demonstrated a lower proportion of time of dysfunctional autoregulation than 8 

reported by Ameloot and colleagues6.  In their study, the authors defined autoregulation as 9 

present when the slope of the linear regression prediction was <0.05%/mmHg, and absent when 10 

the slope was higher than this threshold.  Under their definition, patients with up-sloping (figure 11 

2c) or down-sloping (figure 2d) relationships between COx and MAP would have been labeled 12 

as disturbed autoregulation.  This may not be correct as patients do maintain the ability to 13 

autoregulate, but the range of observable MAP spans the autoregulatory thresholds.  14 

Furthermore, using linear regression may introduce model misspecification when the true 15 

relationship may in fact be non-linear.  These concerns highlight the limitations of many studies 16 

examining autoregulation, including our own: the definition of adequate or dysfunctional 17 

cerebral autoregulation.  These studies all have the underlying assumption of a fixed 18 

autoregulatory curve.  Autoregulation is more likely dynamic with regional and temporal 19 

heterogeneity3.  In addition, studies use varying definitions of what constitutes dysfunctional 20 

autoregulation: near zero slope of the relationship between COx and MAP6, specific COx 21 

thresholds8,14, or the inability to calculate MAPOPT
29.  We chose a COx threshold of 0.3 or above 22 

to indicated dysfunctional autoregulation.  This approach allows for a time-dependent change in 23 

the autoregulatory curve, which may not be seen with the other methods listed.  This also 24 

allowed us to examine non-linear relationships between COx and MAP, and thus addressing the 25 

constraints placed by linear regression.   26 

 Much like our study, Pham and colleagues prospectively assessed COx (termed tissue 27 

oxygenation index – TOX) in 23 patients following cardiac arrest9.  They defined dysfunctional 28 

autoregulation as a COx greater than 0, a lower threshold than used in our study.  We chose 0.3 29 

as this represents the threshold used in previously published studies8,30,31.  However, it is likely 30 

that there is no specific threshold for dysfunctional autoregulation, rather it is a continuum.  This 31 
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is suggested in patients with TBI where an autoregulatory threshold for favorable outcome (0.05) 1 

was lower than for survival (0.25)32.  Further work is needed to delineate the definition of 2 

dysfunctional autoregulation as it relates to clinical outcomes.   3 

 In patients with traumatic brain injury, rapid rewarming above 37⁰C results in 4 

dysfunction autoregulation33.  Likewise, there is evidence that hyperthermia may be detrimental 5 

following cardiac arrest34,35.  Although the specific target temperature remains unclear, 6 

temperature control, with strict avoidance of hyperthermia, remains an important management 7 

priority following cardiac arrest2,36. Our results suggest that hyperthermia may result in 8 

dysfunctional autoregulation in this population.  However this interpretation may be skewed by 9 

the few patients with marked hyperthermia.  The important relationship between temperature and 10 

cerebral autoregulation deserves further investigation.    11 

 Because this was a proof-of-concept study, this study was not designed to rigorously 12 

examine for clinically important outcomes.  Thus, any inference regarding the relationship 13 

between COx and either MAP or temperature should be interpreted with caution.  Finally, we do 14 

not have granular data on arterial carbon dioxide, an important potential modifier of cerebral 15 

autoregulation.  16 

 17 

Conclusion 18 

  In our single-centre proof-of-concept study, we demonstrated the ability to assess 19 

cerebral autoregulation and determine a MAPOPT using cerebral oximetry in patients after cardiac 20 

arrest.  This study justifies further observational work to examine the relationship between COx 21 

and time-within MAPOPT ranges and neurologic outcomes. 22 

Acknowledgements 23 

 The authors would like to thank Medtronic PLC who provided the INVOS® monitor and 24 

sensors free of charge.  Medtronic had no involvement in study concept, design, conduct, 25 

analysis or interpretation.  We would also like to thank Jennifer K. Lee, MD (Assistant 26 

Professor, Johns Hopkins University School of Medicine) for all her of advice and help with the 27 

initial setup of the INVOS® and ICM+® brain monitoring software.   28 



 

12 

 

Conflicts of interest 1 

 ICM+ software is licensed by Cambridge Enterprise Ltd, UK. PS and MC have financial 2 

interest in a part of licensing fee.  None of the other authors have any other conflicts of interest to 3 

declare.   4 

 5 

Ethical standards 6 

 All human studies have been approved by the appropriate ethics committee and have 7 

therefore been performed in accordance with the ethical standards laid down in the 1964 8 

Declaration of Helsinki and its later amendments. 9 

 10 

Authors’ Contribution 11 

Dr. Donald Griesdale and Dr. Mypinder Sekhon were the co-principal investigators and 12 

responsible for the concept and design of the study.  They collected all of the data for the study.  13 

They had access to all of the data and takes full responsibility for the integrity of the data and the 14 

accuracy of the data analysis.  They were also involved in interpretation of the data and drafting 15 

of the manuscript.  They have no conflicts of interest and approves of the final submitted version 16 

of the manuscript. 17 

Dr. Penny Brasher performed part of the primary statistical analysis for the study.  She was 18 

involved in data interpretation and drafting the manuscript.  She has no conflicts of interest and 19 

approves of the final version of the manuscript.   20 

Dr. Peter Smielewski was involved in the study design and interpretation of the study.  He also 21 

wrote the configuration files to ensure that our bedside monitors would communicate with 22 

ICM+®.  He help prepare and critically review the manuscript.  He has no conflicts of interest 23 

and approves of the final version of the manuscript. 24 

Dr. Tahara D Bhate collected data and was involved in data interpretation and manuscript 25 

preparation.  She has no conflicts of interest and approve of the final version of the manuscript. 26 

Ms. Denise Foster was involved with the study design.  She collected data and was involved in 27 

interpreting and preparing the manuscript.  She has no conflicts of interest and approve of the 28 

final version of the manuscript. 29 



 

13 

 

Drs. David Menon, Arun Gupta, Marek Czosnyka, William Henderson, Kenneth Gin and 1 

Graham Wong were all involved with the study design.  They also contributed in writing the 2 

final version of the manuscript.  They all approve of the final version of the manuscript.   3 

 4 

References 5 

1.  Laver S, Farrow C, Turner D, Nolan J. Mode of death after admission to an intensive care 6 

unit following cardiac arrest. Intensive Care Med 2004;30:2126–8.  7 

2.  Nielsen N, Wetterslev J, Cronberg T, Erlinge D, Gasche Y, Hassager C, et al. Targeted 8 

temperature management at 33°C versus 36°C after cardiac arrest. N Engl J Med 9 

2013;369:2197–206.  10 

3.  Nolan JP, Neumar RW, Adrie C, Aibiki M, Berg RA, Böttiger BW, et al. Post-cardiac 11 

arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication. A 12 

Scientific Statement from the International Liaison Committee on Resuscitation; the 13 

American Heart Association Emergency Cardiovascular Care Committee; the Coun. 14 

Resuscitation 2008;79:350–79.  15 

4.  Sundgreen C, Larsen FS, Herzog TM, Knudsen GM, Boesgaard S, Aldershvile J. 16 

Autoregulation of Cerebral Blood Flow in Patients Resuscitated From Cardiac Arrest. 17 

Stroke 2001;32:128–32.  18 

5.  Peberdy MA, Callaway CW, Neumar RW, Geocadin RG, Zimmerman JL, Donnino M, et 19 

al. Part 9: Post−Cardiac Arrest Care: 2010 American Heart Association Guidelines for 20 

Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 21 

2010;122:S768–86.  22 

6.  Ameloot K, Genbrugge C, Meex I, Jans F, Boer W, Vander Laenen M, et al. An 23 

observational near-infrared spectroscopy study on cerebral autoregulation in post-cardiac 24 

arrest patients: Time to drop “one-size-fits-all” hemodynamic targets? Resuscitation 25 

2015;90:121–6.  26 

7.  Lee JK, Brady KM, Chung S-E, Jennings JM, Whitaker EE, Aganga D, et al. A pilot study 27 

of cerebrovascular reactivity autoregulation after pediatric cardiac arrest. Resuscitation 28 

2014; 29 

8.  Brady KM, Lee JK, Kibler KK, Smielewski P, Czosnyka M, Easley RB, et al. Continuous 30 

time-domain analysis of cerebrovascular autoregulation using near-infrared spectroscopy. 31 

Stroke 2007;38:2818–25.  32 

9.  Pham P, Bindra J, Chuan A, Jaeger M, Aneman A. Are changes in cerebrovascular 33 

autoregulation following cardiac arrest associated with neurological outcome? Results of a 34 

pilot study. Resuscitation 2015;96:192–8.  35 

10.  Schmidt EA, Czosnyka M, Gooskens I, Piechnik SK, Matta BF, Whitfield PC, et al. 36 

Preliminary experience of the estimation of cerebral perfusion pressure using transcranial 37 

Doppler ultrasonography. J Neurol Neurosurg Psychiatry 2001;70:198–204.  38 

11.  Czosnyka M, Whitehouse H, Smielewski P, Kirkpatrick P, Guazzo EP, Pickard JD. 39 

Computer supported multimodal bed-side monitoring for neuro intensive care. Int J Clin 40 



 

14 

 

Monit Comput 1994;11:223–32.  1 

12.  Aries MJH, Czosnyka M, Budohoski KP, Steiner LA, Lavinio A, Kolias AG, et al. 2 

Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury. 3 

Crit Care Med 2012;40:2456–63.  4 

13.  Smielewski P, M A, Lavinio A, Budohoski KP, Pickard J, Menon D, et al. Use of ICM+ 5 

Software for tracking “Optimal” CPP Values in Real Time. Eur J Anaesthesiol 6 

2012;29:A34.  7 

14.  Brady K, Joshi B, Zweifel C, Smielewski P, Czosnyka M, Easley RB, et al. Real-time 8 

continuous monitoring of cerebral blood flow autoregulation using near-infrared 9 

spectroscopy in patients undergoing cardiopulmonary bypass. Stroke 2010;41:1951–6.  10 

15.  Kilgannon JH, Roberts BW, Jones AE, Mittal N, Cohen E, Mitchell J, et al. Arterial blood 11 

pressure and neurologic outcome after resuscitation from cardiac arrest*. Crit Care Med 12 

2014;42:2083–91.  13 

16.  Bray JE, Bernard S, Cantwell K, Stephenson M, Smith K. The association between 14 

systolic blood pressure on arrival at hospital and outcome in adults surviving from out-of-15 

hospital cardiac arrests of presumed cardiac aetiology. Resuscitation 2014;85:509–15.  16 

17.  Kilgannon JH, Roberts BW, Reihl LR, Chansky ME, Jones AE, Dellinger RP, et al. Early 17 

arterial hypotension is common in the post-cardiac arrest syndrome and associated with 18 

increased in-hospital mortality. Resuscitation 2008;79:410–6.  19 

18.  Kaji AH, Hanif AM, Thomas JL, Niemann JT. Out-of-hospital cardiac arrest: early in-20 

hospital hypotension versus out-of-hospital factors in predicting in-hospital mortality 21 

among those surviving to hospital admission. Resuscitation 2011;82:1314–7.  22 

19.  Trzeciak S, Jones AE, Kilgannon JH, Milcarek B, Hunter K, Shapiro NI, et al. 23 

Significance of arterial hypotension after resuscitation from cardiac arrest*. Crit Care Med 24 

2009;37:2895–903.  25 

20.  Young MN, Hollenbeck RD, Pollock JS, Giuseffi JL, Wang L, Harrell FE, et al. Higher 26 

achieved mean arterial pressure during therapeutic hypothermia is not associated with 27 

neurologically intact survival following cardiac arrest. Resuscitation 2015;88:158–64.  28 

21.  Bhate TD, McDonald B, Sekhon MS, Griesdale DEG. Association between blood 29 

pressure and outcomes in patients after cardiac arrest: A systematic review. Resuscitation 30 

2015;97:1–6.  31 

22.  Jones AE, Shapiro NI, Kilgannon JH, Trzeciak S. Goal-directed hemodynamic 32 

optimization in the post-cardiac arrest syndrome: a systematic review. Resuscitation 33 

2008;77:26–9.  34 

23.  Nishizawa H, Kudoh I. Cerebral autoregulation is impaired in patients resuscitated after 35 

cardiac arrest. Acta Anaesthesiol Scand 1996;40:1149–53.  36 

24.  Gaieski DF, Beylin ME, Abella BS, Grossestreuer A V, Perman SM. What is the optimal 37 

post-arrest hemodynamic strategy? Towards personalized resuscitation strategies. Int Care 38 

Med 2014;3197.  39 

25.  Bouzat P, Sala N, Payen J-F, Oddo M. Beyond intracranial pressure: optimization of 40 



 

15 

 

cerebral blood flow, oxygen, and substrate delivery after traumatic brain injury. Ann 1 

Intensive Care 2013;3:23.  2 

26.  Griesdale DEG, Ortenwall V, Norena M, Wong H, Sekhon MS, Kolmodin L, et al. 3 

Adherence to guidelines for management of cerebral perfusion pressure and outcome in 4 

patients who have severe traumatic brain injury. J Crit Care 2014; 5 

27.  Steiner LA, Pfister D, Strebel SP, Radolovich D, Smielewski P, Czosnyka M. Near-6 

infrared spectroscopy can monitor dynamic cerebral autoregulation in adults. Neurocrit 7 

Care 2009;10:122–8.  8 

28.  Budohoski KP, Czosnyka M, Smielewski P, Varsos G V, Kasprowicz M, Brady KM, et al. 9 

Cerebral autoregulation after subarachnoid hemorrhage: comparison of three methods. J 10 

Cereb Blood Flow Metab 2013;33:449–56.  11 

29.  Weersink CSA, Aries MJH, Dias C, Liu MX, Kolias AG, Donnelly J, et al. Clinical and 12 

Physiological Events That Contribute to the Success Rate of Finding “Optimal” Cerebral 13 

Perfusion Pressure in Severe Brain Trauma Patients. Crit Care Med 2015;43:1952–63.  14 

30.  Budohoski KP, Czosnyka M, de Riva N, Smielewski P, Pickard JD, Menon DK, et al. The 15 

relationship between cerebral blood flow autoregulation and cerebrovascular pressure 16 

reactivity after traumatic brain injury. Neurosurgery 2012;71:652–60; discussion 660–1.  17 

31.  Brady K, Joshi B, Zweifel C, Smielewski P, Czosnyka M, Easley RB, et al. Real-time 18 

continuous monitoring of cerebral blood flow autoregulation using near-infrared 19 

spectroscopy in patients undergoing cardiopulmonary bypass. Stroke 2010;41:1951–6.  20 

32.  Sorrentino E, Diedler J, Kasprowicz M, Budohoski KP, Haubrich C, Smielewski P, et al. 21 

Critical thresholds for cerebrovascular reactivity after traumatic brain injury. Neurocrit 22 

Care 2012;16:258–66.  23 

33.  Lavinio A, Timofeev I, Nortje J, Outtrim J, Smielewski P, Gupta A, et al. Cerebrovascular 24 

reactivity during hypothermia and rewarming. Br J Anaesth 2007;99:237–44.  25 

34.  Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve 26 

the neurologic outcome after cardiac arrest. N Engl J Med 2002;346:549–56.  27 

35.  Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G, et al. Treatment 28 

of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl 29 

J Med 2002;346:557–63.  30 

36.  Callaway CW, Donnino MW, Fink EL, Geocadin RG, Golan E, Kern KB, et al. Part 8: 31 

Post–Cardiac Arrest Care. Circulation 2015;132:S465–82.  32 

 33 

 34 

35 



 

16 

 

 1 

Figure Legends 2 

Figure 1: Clinical recording from ICM+ ® brain monitoring software of a patient in order to 3 

generate the optimal mean arterial pressure (MAPOPT) over an 8-hour period.  The first three 4 

planes are the MAP, regional saturation of oxygen (rSO2), and COx.  The COx is a moving 5 

Pearson correlation coefficient between 30 consecutive, 10-sec averaged values of MAP and the 6 

corresponding rSO2 signals.  The bottom panel is the COx plotted against the intervals of MAP 7 

in 5 mmHg.  A U-shaped curve is plotted with the nadir of the curve being MAPOPT. 8 

Figure 2.  Scatter plot between COx and the corresponding MAP over a 6-hour period for four 9 

individual patients.  The light grey dots are corresponding COx and MAP measurements.  The 10 

black boxes and lines represent median and IQR for COx values within 5mmHg width bins of 11 

MAP.  The dashed line is at a COx of 0.3 which is the threshold for autoregulation.  Values 12 

above that line indicated lack of autoregulation.  The demonstrated relationships include: U-13 

shaped (2A), flat (2B), upsloping (2C) and down-sloping (2D).    14 

Figure 3:  Density plot of the difference between the actual MAP and the MAPOPT (as 15 

determined using COx) for each hour over the entire study period.  Each bin is a width of 5 16 

mmHg.    17 

Figure 4.  Scatter plot between COx and temperature.  The light grey solid lines are a locally 18 

weighted scatterplot smooth for each patient.  The solid black line is a predicted curve generated 19 

using a restricted cubic splines model.  Using multivariable polynomial fractional regression, 20 

there was a non-linear relationship between COx and temperature with increasing COx with 21 

hyperthermia (P=0. 008).   22 

 23 

 24 

 25 

 26 

 27 

28 



 

17 

 

Abbreviations 1 

AHA American Heart Association 

CCU coronary care unit 

COx Correlational coefficient between MAP and 

rSO2 

CPP cerebral perfusion pressure 

FVd / FVm Flow Velocity diastolic / mean 

HIBI hypoxemic ischemic brain injury 

ICP intracranial pressure 

ICU intensive care unit 

IQR Interquartile range 

MAP mean arterial pressure 

MAPOPT optimal mean arterial pressure 

ONSD optic nerve sheath diameter 

ROSC return of spontaneous circulation 

rSO2 regional saturation of oxygen 

SD standard deviation 

TBI traumatic brain injury 

TCD transcranial Doppler 

 2 



Table 1. Baseline characteristics of cohort 
 
 

 

 Cohort 

(n=20) 

Survivors  

(n=9) 

Non-survivors 

(n=11) 

Age in years,  median (IQR) 59 (54 – 67) 55 (48 – 66) 65 (57 – 67) 

Female sex, n (%) 6 (30) 4 (44) 2 (18) 

Etiology of arrest, n(%)    

     Myocardial ischemia / infarction 12 (60) 8 (89) 4 (36) 

     Hypoxemia 4 (20) 0 4 (36) 

     Other 4 (20) 1 (11) 3 (28) 

Out of hospital arrest, n(%) 17 (85) 9 (100) 8 (73) 

Witnessed arrest, n(%) 19 (95) 9 (100) 10 (91) 

Shockable rhythm, n(%) 6 (30) 4 (44) 2 (18) 

Epinephrine dose in miligrams, median (IQR) 2 (1 – 6) 5 (1 – 10) 1.5 (1 – 3) 

Minutes prior to CPR, median (IQR) 0 (0 – 0) 0 (0 – 0) 0 (0 – 10) 

Minutes prior to ROSC, median (IQR) 15 (5 – 33) 5 (4 – 16) 24 (11 – 33) 

Percutaneous intervention, n(%) 10 (50) 8 (89) 2 (18) 

IQR = interquartile range; CPR = cardiopulmonary resuscitation; ROSC = return of spontaneous 

circulation;  



Table 2: Management characteristics of cohort 
 
 

 

 Cohort 

(n=20) 

Survivors  

(n=9) 

Non-survivors 

(n=11) 

Temperature in ⁰C, mean (SD) 36.4 (1.8) 36.5 (1.6) 36.2 (1.9) 

PaCO2 in mmHg, mean (SD) 37 (9) 38 (9) 36 (10) 

Hemoglobin in g/L, mean (SD) 121 (20) 115 (24) 126 (16) 

MAP in mmHg, mean (SD) 76 (10) 79 (8) 74 (11) 

MAPOPT in mmHg, mean (SD) 76 (7) 77 (7) 75 (8) 

rSO2 %, mean (SD) 59 (11) 57 (5) 65 (14) 

COx, mean (SD) 0.066 (0.11) 0.034 (0.047) 0.099 (0.14) 

Percent of time with COx ≥ 0.3, median (IQR) 13 (6 – 19) 10 (6 – 13) 18 (7 - 41) 

Norepinephrine use, n(%) 19 (95) 8 (89) 11 (100) 

Norepinerphrine dose in mcg/min, mean (SD) 12 (13) 11 (13) 12 (13) 

Dobutamine use, n(%) 3 (15) 2 (22) 1 (9) 

Dobutamine dose in mcg/kg/min, mean (SD) 5.3 (1) 6 (1) 4.5 (4) 

Propofol dose in mcg/kg/min, mean (SD) 40 (15) 44 (19) 36 (12) 

MAP = mean arterial pressure; rSO2 = regional saturation of oxygen; PaCO2 = arterial carbon dioxide tension; 

IQR = interquartile range; CPR = cardiopulmonary resuscitation; ROSC = return of spontaneous circulation;  
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