6 research outputs found

    Molecular mechanism of parenchymal injury and the role of duct obstruction and ductal hypertension in the pathogenesis of chronic pancreatitis

    No full text
    The pathobiology of chronic pancreatitis (CP) remains enigmatic despite remarkable progress made recently in uncovering key mechanisms involved in the initiation and progression of the disease. CP is increasingly thought of as a multifactorial disorder. Apoptosis plays a role in parenchymal destruction, the pathological hallmark of CP. The apoptotic mechanisms preferentially target the exocrine compartment, leaving endocrine islets relatively intact for a prolonged period. Exocrine cells shed their "immunoprivileged" status, express death receptors, and are rendered susceptible to apoptosis induced by death ligands on infiltrating lymphocytes, and released locally by activated pancreatic stellate cells. Islet cells retain their "immunoprivileged" status and activate anti-apoptotic programs through NF-kappaB. Ductal changes, including distortion, dilatation, and pancreatic ductal hypertension in the setting of CP, induce genomic damage and increased cell turnover. In addition, signaling mechanisms that play a role in the development of embryonic pancreas are reinstated, thus, playing a role in repair, regeneration, and transformation. This, in turn, leads to acino-ductal metaplasia (ADM) and pancreatic intraepithelial neoplasia (PanIN). Some of these pathways are activated in pancreatic cancer. We attempt to integrate the current knowledge and major concepts in the pathogenesis of CP and to explain the mechanism of differential cell loss. We outline the possible implications of signaling pathway activation in pancreatic inflammation, relevant to the cellular transformation that may cause transformation leading to pancreatic neoplasia

    NF-κB Regulates Androgen Receptor Expression and Prostate Cancer Growth

    No full text
    Prostate cancers that progress during androgen-deprivation therapy often overexpress the androgen receptor (AR) and depend on AR signaling for growth. In most cases, increased AR expression occurs without gene amplification and may be due to altered transcriptional regulation. The transcription factor nuclear factor (NF)-κB, which is implicated in tumorigenesis, functions as an important downstream substrate of mitogen-activated protein kinase, phosphatidylinositol 3-kinase, AKT, and protein kinase C and plays a role in other cancer-associated signaling pathways. NF-κB is an important determinant of prostate cancer clinical biology, and therefore we investigated its role in the regulation of AR expression. We found that NF-κB expression in prostate cancer cells significantly increased AR mRNA and protein levels, AR transactivation activity, serum prostate-specific antigen levels, and cell proliferation. NF-κB inhibitors decrease AR expression levels, prostate-specific antigen secretion, and proliferation of prostate cancer cells in vitro. Furthermore, inhibitors of NF-κB demonstrated anti-tumor activity in androgen deprivation-resistant prostate cancer xenografts. In addition, levels of both NF-κB and AR were strongly correlated in human prostate cancer. Our data suggest that NF-κB can regulate AR expression in prostate cancer and that NF-κB inhibitors may have therapeutic potential
    corecore