465 research outputs found

    Some results on lateral suppression obtained in a partial‐masking lateralization paradigm

    Full text link

    Light condition experienced by parent plants influences the response of offspring to light via both parental effects and soil legacy effects

    Get PDF
    1. Environmental conditions experienced by parent plants can influence offspring performance through parental effects induced by DNA methylation. The offspring can also be influenced by environmental conditions experienced by their parents via soil legacy effects due to plant-mediated changes in the composition of soil microbes. These two effects are likely to act simultaneously, but empirical evidence for combined effects is limited.2. We conducted a two-phase experiment with five genotypes of a clonal plant Hydrocotyle vulgaris. In the first phase, we grew parent plants of each genotype under two light conditions (ambient vs. shade) and two DNA demethylation treatments (treated with water vs. 5-azacytidine). We then collected soils and clonal offspring for each genotype from each of these four treatments and measured soil (a)biotic properties. In the second phase, we grew the offspring from each of the four treatments in the four different soils, under the two light conditions.3. When grown under ambient light condition and in soil from ambient parents, offspring produced by ambient parents grew larger than offspring produced by shaded parents when the parents were treated with water. This difference was smaller when the parents were treated with 5-azacytidine, and disappeared when the offspring were grown in soil from shaded parents. The growth difference was also observed when the offspring were grown under shaded condition and in soil from shaded parents. However, this difference was greater when the parents were treated with 5-azacytidine, and disappeared when the offspring were grown in soil from ambient parents. Moreover, offspring growth was associated with fungal composition and total phosphorus of the soil in which the parents had grown.4. Our results show, for the first time, that light condition experienced by parents can influence offspring responses to light through both parental effects and soil legacies. The parental effects were mediated by changes in DNA methylation and the soil legacies were due to plant-mediated changes in a combination of soil biotic and abiotic properties. These impacts may eventually influence the ecological and evolutionary trajectories of clonal plant populations.Plant science

    Rapid automatic assessment of microvascular density in sidestream dark field images

    Get PDF
    The purpose of this study was to develop a rapid and fully automatic method for the assessment of microvascular density and perfusion in sidestream dark field (SDF) images. We modified algorithms previously developed by our group for microvascular density assessment and introduced a new method for microvascular perfusion assessment. To validate the new algorithm for microvascular density assessment, we reanalyzed a selection of SDF video clips (n = 325) from a study in intensive care patients and compared the results to (semi-)manually found microvascular densities. The method for microvascular perfusion assessment (temporal SDF image contrast analysis, tSICA) was tested in several video simulations and in one high quality SDF video clip where the microcirculation was imaged before and during circulatory arrest in a cardiac surgery patient. We found that the new method for microvascular density assessment was very rapid (<30 s/clip) and correlated excellently with (semi-)manually measured microvascular density. The new method for microvascular perfusion assessment (tSICA) was shown to be limited by high cell densities and velocities, which severely impedes the applicability of this method in real SDF images. Hence, here we present a validated method for rapid and fully automatic assessment of microvascular density in SDF images. The new method was shown to be much faster than the conventional (semi-)manual method. Due to current SDF imaging hardware limitations, we were not able to automatically detect microvascular perfusion

    Innocent Frauds Meet Goodhart’s Law in Monetary Policy

    Get PDF
    This paper discusses recent UK monetary policies as instances of Galbraith’s ‘innocent frauds’, including the idea that money is a thing rather than a relationship, the fallacy of composition that what is possible for one bank is possible for all banks, and the belief that the money supply can be controlled by reserves management. The origins of the idea of QE, and its defense when it was applied in Britain, are analysed through this lens. An empirical analysis of the effect of reserves on lending is conducted; we do not find evidence that QE ‘worked’ either by a direct effect on money spending, or through an equity market effect. These findings are placed in a historical context in a comparison with earlier money control experiments in the UK

    The effect of calf neuromuscular electrical stimulation and intermittent pneumatic compression on thigh microcirculation

    Get PDF
    Objective: This study compares the effectiveness of a neuromuscular electrical stimulation (NMES) device and an intermittent pneumatic compression (IPC) device on enhancing microcirculatory blood flow in the thigh of healthy individuals, when stimulation is carried out peripherally at the calf. Materials and method: Blood microcirculation of ten healthy individuals was recorded using laser speckle contrast imaging (LSCI) technique. A region of interest (ROI) was marked on each participant thigh. The mean flux within the ROI was calculated at four states: rest, NMES device with visible muscle actuation (VMA), NMES device with no visible muscle actuation (NVMA) and IPC device. Results: Both NMES and IPC devices increased blood flow in the thigh when stimulation was carried out peripherally at the calf. The NMES device increased mean blood perfusion from baseline by 399.8% at the VMA state and 150.6% at the NVMA state, IPC device increased the mean blood perfusion by 117.3% from baseline. Conclusion: The NMES device at VMA state increased microcirculation by more than a factor of 3 in contrast to the IPC device. Even at the NVMA state, the NMES device increased blood flow by 23% more than the IPC device. Given the association between increased microcirculation and reduced oedema, NMES may be a more effective modality than IPC at reducing oedema, therefore further research is needed to explore this
    corecore