64 research outputs found

    Gender Differences and Intra-Gender Differences amongst Management Information Systems Students

    Get PDF
    Few women major in Management Information Systems (MIS). The purpose of this paper is to examine the reasons for women’s underrepresentation in MIS. In addition to examining gender differences, an important and novel goal of this study is to examine intra-gender differences in undergraduate students, i.e., differences among female MIS majors and female students who enrolled in MIS courses as a Business elective (i.e., non-majors). This study found that women\u27s experiences with and self-efficacy regarding computers were much lower than men’s, but that they did not have more negative stereotypes and attitudes toward the field. Overall female students had more positive attitudes towards their MIS courses and instructors than male students did. One of the most interesting findings was the importance of female high school computer teachers and role models for female students. Importantly, there was very strong evidence for intra-gender differences. Female majors had much higher computer self-efficacy, computer experience, had more positive attitudes toward MIS, and were more likely to have had female computer teachers in high school compared to female non-majors. The implications of these findings for MIS are discussed

    Paralog-specific TTC30 regulation of Sonic hedgehog signaling

    Get PDF
    The intraflagellar transport (IFT) machinery is essential for cilia assembly, maintenance, and trans-localization of signaling proteins. The IFT machinery consists of two large multiprotein complexes, one of which is the IFT-B. TTC30A and TTC30B are integral components of this complex and were previously shown to have redundant functions in the context of IFT, preventing the disruption of IFT-B and, thus, having a severe ciliogenesis defect upon loss of one paralog. In this study, we re-analyzed the paralog-specific protein complexes and discovered a potential involvement of TTC30A or TTC30B in ciliary signaling. Specifically, we investigated a TTC30A-specific interaction with protein kinase A catalytic subunit α, a negative regulator of Sonic hedgehog (Shh) signaling. Defects in this ciliary signaling pathway are often correlated to synpolydactyly, which, intriguingly, is also linked to a rare TTC30 variant. For an in-depth analysis of this unique interaction and the influence on Shh, TTC30A or B single- and double-knockout hTERT-RPE1 were employed, as well as rescue cells harboring wildtype TTC30 or the corresponding mutation. We could show that mutant TTC30A inhibits the ciliary localization of Smoothened. This observed effect is independent of Patched1 but associated with a distinct phosphorylated PKA substrate accumulation upon treatment with forskolin. This rather prominent phenotype was attenuated in mutant TTC30B. Mass spectrometry analysis of wildtype versus mutated TTC30A or TTC30B uncovered differences in protein complex patterns and identified an impaired TTC30A–IFT57 interaction as the possible link leading to synpolydactyly. We could observe no impact on cilia assembly, leading to the hypothesis that a slight decrease in IFT-B binding can be compensated, but mild phenotypes, like synpolydactyly, can be induced by subtle signaling changes. Our systematic approach revealed the paralog-specific influence of TTC30A KO and mutated TTC30A on the activity of PRKACA and the uptake of Smoothened into the cilium, resulting in a downregulation of Shh. This downregulation, combined with interactome alterations, suggests a potential mechanism of how mutant TTC30A is linked to synpolydactyly

    A targeted multi-proteomics approach generates a blueprint of the ciliary ubiquitinome

    Get PDF
    Establishment and maintenance of the primary cilium as a signaling-competent organelle requires a high degree of fine tuning, which is at least in part achieved by a variety of post-translational modifications. One such modification is ubiquitination. The small and highly conserved ubiquitin protein possesses a unique versatility in regulating protein function via its ability to build mono and polyubiquitin chains onto target proteins. We aimed to take an unbiased approach to generate a comprehensive blueprint of the ciliary ubiquitinome by deploying a multi-proteomics approach using both ciliary-targeted ubiquitin affinity proteomics, as well as ubiquitin-binding domain-based proximity labelling in two different mammalian cell lines. This resulted in the identification of several key proteins involved in signaling, cytoskeletal remodeling and membrane and protein trafficking. Interestingly, using two different approaches in IMCD3 and RPE1 cells, respectively, we uncovered several novel mechanisms that regulate cilia function. In our IMCD3 proximity labeling cell line model, we found a highly enriched group of ESCRT-dependent clathrin-mediated endocytosis-related proteins, suggesting an important and novel role for this pathway in the regulation of ciliary homeostasis and function. In contrast, in RPE1 cells we found that several structural components of caveolae (CAV1, CAVIN1, and EHD2) were highly enriched in our cilia affinity proteomics screen. Consistently, the presence of caveolae at the ciliary pocket and ubiquitination of CAV1 specifically, were found likely to play a role in the regulation of ciliary length in these cells. Cilia length measurements demonstrated increased ciliary length in RPE1 cells stably expressing a ubiquitination impaired CAV1 mutant protein. Furthermore, live cell imaging in the same cells revealed decreased CAV1 protein turnover at the cilium as the possible cause for this phenotype. In conclusion, we have generated a comprehensive list of cilia-specific proteins that are subject to regulation via ubiquitination which can serve to further our understanding of cilia biology in health and disease

    Development of a primary care-based complex care management intervention for chronically ill patients at high risk for hospitalization: a study protocol

    Get PDF
    Background: Complex care management is seen as an approach to face the challenges of an ageing society with increasing numbers of patients with complex care needs. The Medical Research Council in the United Kingdom has proposed a framework for the development and evaluation of complex interventions that will be used to develop and evaluate a primary care-based complex care management program for chronically ill patients at high risk for future hospitalization in Germany. Methods and design: We present a multi-method procedure to develop a complex care management program to implement interventions aimed at reducing potentially avoidable hospitalizations for primary care patients with type 2 diabetes mellitus, chronic obstructive pulmonary disease, or chronic heart failure and a high likelihood of hospitalization. The procedure will start with reflection about underlying precipitating factors of hospitalizations and how they may be targeted by the planned intervention (pre-clinical phase). An intervention model will then be developed (phase I) based on theory, literature, and exploratory studies (phase II). Exploratory studies are planned that entail the recruitment of 200 patients from 10 general practices. Eligible patients will be identified using two ways of 'case finding': software based predictive modelling and physicians' proposal of patients based on clinical experience. The resulting subpopulations will be compared regarding healthcare utilization, care needs and resources using insurance claims data, a patient survey, and chart review. Qualitative studies with healthcare professionals and patients will be undertaken to identify potential barriers and enablers for optimal performance of the complex care management program. Discussion: This multi-method procedure will support the development of a primary care-based care management program enabling the implementation of interventions that will potentially reduce avoidable hospitalizations

    Real-Time Cytotoxicity Assay for Rapid and Sensitive Detection of Ricin from Complex Matrices

    Get PDF
    BACKGROUND: In the context of a potential bioterrorist attack sensitive and fast detection of functionally active toxins such as ricin from complex matrices is necessary to be able to start timely countermeasures. One of the functional detection methods currently available for ricin is the endpoint cytotoxicity assay, which suffers from a number of technical deficits. METHODOLOGY/FINDINGS: This work describes a novel online cytotoxicity assay for the detection of active ricin and Ricinus communis agglutinin, that is based on a real-time cell electronic sensing system and impedance measurement. Characteristic growth parameters of Vero cells were monitored online and used as standardized viability control. Upon incubation with toxin the cell status and the cytotoxic effect were visualized using a characteristic cell index-time profile. For ricin, tested in concentrations of 0.06 ng/mL or above, a concentration-dependent decrease of cell index correlating with cytotoxicity was recorded between 3.5 h and 60 h. For ricin, sensitive detection was determined after 24 h, with an IC50 of 0.4 ng/mL (for agglutinin, an IC50 of 30 ng/mL was observed). Using functionally blocking antibodies, the specificity for ricin and agglutinin was shown. For detection from complex matrices, ricin was spiked into several food matrices, and an IC50 ranging from 5.6 to 200 ng/mL was observed. Additionally, the assay proved to be useful in detecting active ricin in environmental sample materials, as shown for organic fertilizer containing R. communis material. CONCLUSIONS/SIGNIFICANCE: The cell-electrode impedance measurement provides a sensitive online detection method for biologically active cytotoxins such as ricin. As the cell status is monitored online, the assay can be standardized more efficiently than previous approaches based on endpoint measurement. More importantly, the real-time cytotoxicity assay provides a fast and easy tool to detect active ricin in complex sample matrices

    An organelle-specific protein landscape identifies novel diseases and molecular mechanisms

    Get PDF
    Contains fulltext : 158967.pdf (publisher's version ) (Open Access)Cellular organelles provide opportunities to relate biological mechanisms to disease. Here we use affinity proteomics, genetics and cell biology to interrogate cilia: poorly understood organelles, where defects cause genetic diseases. Two hundred and seventeen tagged human ciliary proteins create a final landscape of 1,319 proteins, 4,905 interactions and 52 complexes. Reverse tagging, repetition of purifications and statistical analyses, produce a high-resolution network that reveals organelle-specific interactions and complexes not apparent in larger studies, and links vesicle transport, the cytoskeleton, signalling and ubiquitination to ciliary signalling and proteostasis. We observe sub-complexes in exocyst and intraflagellar transport complexes, which we validate biochemically, and by probing structurally predicted, disruptive, genetic variants from ciliary disease patients. The landscape suggests other genetic diseases could be ciliary including 3M syndrome. We show that 3M genes are involved in ciliogenesis, and that patient fibroblasts lack cilia. Overall, this organelle-specific targeting strategy shows considerable promise for Systems Medicine

    World Congress Integrative Medicine & Health 2017: Part one

    Get PDF

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF
    • 

    corecore