239 research outputs found
Children and young people’s contributions to public involvement and engagement activities in health-related research: A scoping review
Background: There has been an increasing interest in how children and young people can be involved in patient and public involvement and engagement (PPIE) in health research. However, relatively little robust evidence exists about which children and young people are reported as being involved or excluded from PPIE; the methods reported as being used to involve them in PPIE; and the reasons presented for their involvement in PPIE and what happens as a result. We performed a scoping review to identify, synthesise and present what is known from the literature about patient and public involvement and engagement activities with children and young people in health related research.
Methods: Relevant studies were identified by searches in Scopus, Medline, CINAHL, Cochrane and PsychInfo databases, and hand checking of reference lists and grey literature. An adapted version of the Guidance for Reporting Involvement of Patients and the Public (GRIPP2) was used as a framework to collate the data. Two reviewers independently screened articles and decisions were consensually made.
Main findings: A total of 9805 references were identified (after duplicates were removed) through the literature search, of which 233 full-text articles were assessed for eligibility. Forty studies published between 2000 and 2019 were included in the review. The review reveals ambiguities in the quality of reporting of PPIE with children with clear reporting on demographics and health conditions. The review found that children and young people were commonly involved in multiple stages of research but there was also significant variation in the level at which children and young people were involved in PPIE. Evaluation of the impact of children and young people’s involvement in PPIE was limited.
Conclusions: Consultation, engagement and participation can all offer children and young people worthwhile ways of contributing to research with the level, purpose and impact of involvement determined by the children and young people themselves. However, careful decisions need to be made to ensure that it is suited to the context, setting and focus so that the desired PPIE impacts are achieved. Improvements should be made to the evaluation and reporting of PPIE in research. This will help researchers and funders to better understand the benefits, challenges and impact of PPIE with children and young people on health research
HIV gp120 in the lungs of antiretroviral therapy–treated Individuals impairs alveolar macrophage responses to pneumococci
Rationale People living with HIV (PLWH) are at significantly increased risk of invasive pneumococcal disease, despite long-term antiretroviral therapy (ART). The mechanism explaining this observation remains undefined. Objectives We hypothesized apoptosis-associated microbicidal mechanisms, required to clear intracellular pneumococci that survive initial phagolysosomal killing, are perturbed. Methods Alveolar macrophages (AM) were obtained by bronchoalveolar lavage (BAL) from healthy donors or HIV-1-seropositive donors on long-term ART with undetectable plasma viral load. Monocyte-derived macrophages (MDM) were obtained from healthy donors and infected with HIV-1BaL or treated with gp120. Macrophages were challenged with opsonized serotype 2 Streptococcus pneumoniae and assessed for apoptosis, bactericidal activity, protein expression and mitochondrial reactive oxygen species (mROS). AM phenotyping, ultra-sensitive HIV-1 RNA quantification and gp120 measurement were also performed in BAL. Measurements and Main Results HIV-1BaL infection impaired apoptosis, induction of mROS and pneumococcal killing by MDM. Apoptosis-associated pneumococcal killing was also reduced in AM from ART treated HIV-1-seropositive donors. BAL fluid from these individuals demonstrated persistent lung CD8+ T-cell lymphocytosis, and gp120 or HIV-1 RNA was also detected. Despite this, transcriptional activity in AM freshly isolated from PLWH was broadly similar to healthy volunteers. Instead, gp120 phenocopied the defect in pneumococcal killing in healthy MDM through post-translational modification of Mcl-1, preventing apoptosis induction, caspase activation and increased mROS generation. Moreover gp120 also inhibited mROS dependent pneumococcal killing in MDM. Conclusions. Despite ART, HIV-1, via gp120, drives persisting innate immune defects in AM microbicidal mechanisms, enhancing susceptibility to pneumococcal disease
Control of substrate gating and translocation into ClpP by channel residues and ClpX binding
ClpP is a self-compartmentalized protease, which has very limited degradation activity unless it associates with ClpX to form ClpXP or with ClpA to form ClpAP. Here, we show that ClpX binding stimulates ClpP cleavage of peptides larger than a few amino acids and enhances ClpP active-site modification. Stimulation requires ATP binding but not hydrolysis by ClpX. The magnitude of this enhancement correlates with increasing molecular weight of the molecule entering ClpP. Amino-acid substitutions in the channel loop or helix A of ClpP enhance entry of larger substrates into the free enzyme, eliminate ClpX binding in some cases, and are not further stimulated by ClpX binding in other instances. These results support a model in which the channel residues of free ClpP exclude efficient entry of all but the smallest peptides into the degradation chamber, with ClpX binding serving to relieve these inhibitory interactions. Specific ClpP channel variants also prevent ClpXP translocation of certain amino-acid sequences, suggesting that the wild-type channel plays an important role in facilitating broad translocation specificity. In combination with previous studies, our results indicate that collaboration between ClpP and its partner ATPases opens a gate that functions to exclude larger substrates from isolated ClpP.National Institutes of Health (U.S.) (Grant number AI-15706
Impaired Mitochondrial Microbicidal Responses in Chronic Obstructive Pulmonary Disease Macrophages
RATIONALE: Chronic obstructive pulmonary disease (COPD) is characterized by impaired clearance of pulmonary bacteria. OBJECTIVES: The effect of COPD on alveolar macrophage (AM) microbicidal responses was investigated. METHODS: Alveolar macrophages (AMs) were obtained from bronchoalveolar lavage from healthy donors or COPD patients and challenged with opsonized serotype 14 Streptococcus pneumoniae. Cells were assessed for apoptosis, bactericidal activity and mitochondrial reactive oxygen species (mROS) production. A transgenic mouse line, in which the CD68 promoter ensures macrophage specific expression of human Mcl-1 (CD68.hMcl-1), was used to model the molecular aspects of COPD. MEASUREMENTS AND MAIN RESULTS: COPD AM had elevated levels of Mcl-1, an anti-apoptotic Bcl-2 family member, with selective reduction of delayed intracellular bacterial killing. CD68.hMcl-1 AM phenocopied the microbicidal defect since transgenic mice demonstrated impaired clearance of pulmonary bacteria and increased neutrophilic inflammation. Murine bone marrow-derived macrophages (BMDM) and human monocyte-derived macrophages (MDM) generated mitochondrial reactive oxygen species (mROS) in response to pneumococci, which co-localized with bacteria and phagolysosomes to enhance bacterial killing. The Mcl-1 transgene increased oxygen consumption rates and mROS expression in mock-infected BMDM but reduced caspase-dependent mROS production after pneumococcal challenge. COPD AM also increased basal mROS expression, but failed to increase production after pneumococcal challenge, in keeping with reduced intracellular bacterial killing. The defect in COPD AM intracellular killing was associated with a reduced ratio of mROS /superoxide dismutase 2. CONCLUSIONS: Upregulation of Mcl-1 and chronic adaption to oxidative stress alters mitochondrial metabolism and microbicidal function, reducing the delayed phase of intracellular bacterial clearance in COPD
Monocytes regulate the mechanism of T-cell death by inducing Fas-mediated apoptosis during bacterial infection.
Monocytes and T-cells are critical to the host response to acute bacterial infection but monocytes are primarily viewed as amplifying the inflammatory signal. The mechanisms of cell death regulating T-cell numbers at sites of infection are incompletely characterized. T-cell death in cultures of peripheral blood mononuclear cells (PBMC) showed 'classic' features of apoptosis following exposure to pneumococci. Conversely, purified CD3(+) T-cells cultured with pneumococci demonstrated necrosis with membrane permeabilization. The death of purified CD3(+) T-cells was not inhibited by necrostatin, but required the bacterial toxin pneumolysin. Apoptosis of CD3(+) T-cells in PBMC cultures required 'classical' CD14(+) monocytes, which enhanced T-cell activation. CD3(+) T-cell death was enhanced in HIV-seropositive individuals. Monocyte-mediated CD3(+) T-cell apoptotic death was Fas-dependent both in vitro and in vivo. In the early stages of the T-cell dependent host response to pneumococci reduced Fas ligand mediated T-cell apoptosis was associated with decreased bacterial clearance in the lung and increased bacteremia. In summary monocytes converted pathogen-associated necrosis into Fas-dependent apoptosis and regulated levels of activated T-cells at sites of acute bacterial infection. These changes were associated with enhanced bacterial clearance in the lung and reduced levels of invasive pneumococcal disease
Social Preferences and the Efficiency of Bilateral Exchange
Under what conditions do social preferences, such as altruism or a concern for fair outcomes, generate efficient trade? I analyze theoretically a simple bilateral exchange game: Each player sequentially takes an action that reduces his own material payoff but increases the other player’s. Each player’s preferences may depend on both his/her own material payoff and the other player’s. I identify necessary conditions and sufficient conditions on the players’ preferences for the outcome of their interaction to be Pareto efficient. The results have implications for interpreting the rotten kid theorem, gift exchange in the laboratory, and gift exchange in the field
A cardinal role for cathepsin D in co-ordinating the host-mediated apoptosis of macrophages and killing of pneumococci
The bactericidal function of macrophages against pneumococci is enhanced by their apoptotic demise, which is controlled by the anti-apoptotic protein Mcl-1. Here, we show that lysosomal membrane permeabilization (LMP) and cytosolic translocation of activated cathepsin D occur prior to activation of a mitochondrial pathway of macrophage apoptosis. Pharmacological inhibition or knockout of cathepsin D during pneumococcal infection blocked macrophage apoptosis. As a result of cathepsin D activation, Mcl-1 interacted with its ubiquitin ligase Mule and expression declined. Inhibition of cathepsin D had no effect on early bacterial killing but inhibited the late phase of apoptosis-associated killing of pneumococci in vitro. Mice bearing a cathepsin D-/- hematopoietic system demonstrated reduced macrophage apoptosis in vivo, with decreased clearance of pneumococci and enhanced recruitment of neutrophils to control pulmonary infection. These findings establish an unexpected role for a cathepsin D-mediated lysosomal pathway of apoptosis in pulmonary host defense and underscore the importance of apoptosis-associated microbial killing to macrophage function
Mechanochemical basis of protein degradation by a double-ring AAA+ machine
Molecular machines containing double or single AAA+ rings power energy-dependent protein degradation and other critical cellular processes, including disaggregation and remodeling of macromolecular complexes. How the mechanical activities of double-ring and single-ring AAA+ enzymes differ is unknown. Using single-molecule optical trapping, we determine how the double-ring ​ClpA enzyme from Escherichia coli, in complex with the ​ClpP peptidase, mechanically degrades proteins. We demonstrate that ​ClpA unfolds some protein substrates substantially faster than does the single-ring ​ClpX enzyme, which also degrades substrates in collaboration with ​ClpP. We find that ​ClpA is a slower polypeptide translocase and that it moves in physical steps that are smaller and more regular than steps taken by ​ClpX. These direct measurements of protein unfolding and translocation define the core mechanochemical behavior of a double-ring AAA+ machine and provide insight into the degradation of proteins that unfold via metastable intermediates.Howard Hughes Medical InstituteNational Institutes of Health (U.S.) (Grant AI-16892
Bacterial Gut Symbionts Contribute to Seed Digestion in an Omnivorous Beetle
Obligate bacterial symbionts alter the diets of host animals in numerous ways, but the ecological roles of facultative bacterial residents that colonize insect guts remain unclear. Carabid beetles are a common group of beneficial insects appreciated for their ability to consume insect prey and seeds, but the contributions of microbes to diet diversification in this and similar groups of facultative granivores are largely unknown.Using 16S rRNA gene clone libraries and terminal restriction fragment (tRF) length polymorphism analyses of these genes, we examined the bacterial communities within the guts of facultatively granivorous, adult Harpalus pensylvanicus (Carabidae), fed one of five dietary treatments: 1) an untreated Field population, 2) Seeds with antibiotics (seeds were from Chenopodium album), 3) Seeds without antibiotics, 4) Prey with antibiotics (prey were Acheta domesticus eggs), and 5) Prey without antibiotics. The number of seeds and prey consumed by each beetle were recorded following treatment. Harpalus pensylvanicus possessed a fairly simple gut community of approximately 3-4 bacterial operational taxonomic units (OTU) per beetle that were affiliated with the Gammaproteobacteria, Bacilli, Alphaproteobacteria, and Mollicutes. Bacterial communities of the host varied among the diet and antibiotic treatments. The field population and beetles fed seeds without antibiotics had the closest matching bacterial communities, and the communities in the beetles fed antibiotics were more closely related to each other than to those of the beetles that did not receive antibiotics. Antibiotics reduced and altered the bacterial communities found in the beetle guts. Moreover, beetles fed antibiotics ate fewer seeds, and those beetles that harbored the bacterium Enterococcus faecalis consumed more seeds on average than those lacking this symbiont.We conclude that the relationships between the bacterium E. faecalis and this factultative granivore's ability to consume seeds merit further investigation, and that facultative associations with symbiotic bacteria have important implications for the nutritional ecology of their hosts
- …