27 research outputs found

    Silylation of C–H bonds in aromatic heterocycles by an Earth-abundant metal catalyst

    Get PDF
    Heteroaromatic compounds containing carbon–silicon (C–Si) bonds are of great interest in the fields of organic electronics and photonics1, drug discovery, nuclear medicine and complex molecule synthesis, because these compounds have very useful physicochemical properties. Many of the methods now used to construct heteroaromatic C–Si bonds involve stoichiometric reactions between heteroaryl organometallic species and silicon electrophiles or direct, transition-metal-catalysed intermolecular carbon–hydrogen (C–H) silylation using rhodium or iridium complexes in the presence of excess hydrogen acceptors. Both approaches are useful, but their limitations include functional group incompatibility, narrow scope of application, high cost and low availability of the catalysts, and unproven scalability. For this reason, a new and general catalytic approach to heteroaromatic C–Si bond construction that avoids such limitations is highly desirable. Here we report an example of cross-dehydrogenative heteroaromatic C–H functionalization catalysed by an Earth-abundant alkali metal species. We found that readily available and inexpensive potassium tert-butoxide catalyses the direct silylation of aromatic heterocycles with hydrosilanes, furnishing heteroarylsilanes in a single step. The silylation proceeds under mild conditions, in the absence of hydrogen acceptors, ligands or additives, and is scalable to greater than 100 grams under optionally solvent-free conditions. Substrate classes that are difficult to activate with precious metal catalysts are silylated in good yield and with excellent regioselectivity. The derived heteroarylsilane products readily engage in versatile transformations enabling new synthetic strategies for heteroaromatic elaboration, and are useful in their own right in pharmaceutical and materials science applications

    Sodium Hydroxide Catalyzed Dehydrocoupling of Alcohols with Hydrosilanes

    Get PDF
    An O–Si bond construction protocol employing abundantly available and inexpensive NaOH as the catalyst is described. The method enables the cross-dehydrogenative coupling of an alcohol and hydrosilane to directly generate the corresponding silyl ether under mild conditions and without the production of stoichiometric salt byproducts. The scope of both coupling partners is excellent, positioning the method for use in complex molecule and materials science applications. A novel Si-based cross-coupling reagent is also reported

    A potassium tert-butoxide and hydrosilane system for ultra-deep desulfurization of fuels

    Get PDF
    Hydrodesulfurization (HDS) is the process by which sulfur-containing impurities are removed from petroleum streams, typically using a heterogeneous, sulfided transition metal catalyst under high H_2 pressures and temperatures. Although generally effective, a major obstacle that remains is the desulfurization of highly refractory sulfur-containing heterocycles, such as 4,6-dimethyldibenzothiophene (4,6-Me_2DBT), which are naturally occurring in fossil fuels. Homogeneous HDS strategies using well-defined molecular catalysts have been designed to target these recalcitrant S-heterocycles; however, the formation of stable transition metal sulfide complexes following C–S bond activation has largely prevented catalytic turnover. Here we show that a robust potassium (K) alkoxide (O)/hydrosilane (Si)-based (‘KOSi’) system efficiently desulfurizes refractory sulfur heterocycles. Subjecting sulfur-rich diesel (that is, [S] ∼ 10,000 ppm) to KOSi conditions results in a fuel with [S] ∼ 2 ppm, surpassing ambitious future governmental regulatory goals set for fuel sulfur content in all countries. Fossil fuels contain naturally occurring organosulfur impurities, with quantities varying depending on the type of feedstock. These sulfur-containing organic small molecules poison catalytic converters and generate polluting sulfur dioxides when combusted. Hydrodesulfurization (HDS) is the industrial process by which sulfur impurities are removed from petroleum fractions prior to their use as fuels. Currently, HDS is performed by treating petroleum with H_2 at high pressures and temperatures (that is, 150–2,250 psi and 400 °C) over heterogeneous catalysts such as cobalt-doped molybdenum sulfide supported on alumina (that is, CoMoS_x∕γ-Al_2O_3; Fig. 1a). However, certain organosulfur species, in particular dibenzothiophenes alkylated at positions 4 and 6, are not efficiently removed. Homogeneous strategies employing sophisticated, well-defined transition metal complexes—including those based on platinum, nickel, tungsten, molybdenum, palladium, ruthenium, rhodium, iron, cobalt, and others—have been extensively investigated. While these studies have provided valuable mechanistic insights, several fundamental issues, such as the formation of stable organometallic S–M species upon C–S bond activation by the metal centre (Fig. 1b), generally restrict industrial implementation of such methods. Rare examples of desulfurization of dibenzothiophenes alkylated at the 4 and 6 positions by homogeneous transition metal catalysis utilized either Ni compounds in combination with superstoichiometric alkyl Grignard reagents or Ni or Co phosphoranimide complexes in the presence of superstoichiometric KH. These issues pose a formidable challenge for the development of new HDS methods. Moreover, increasingly strict governmental regulations require limiting the sulfur content in diesel fuel and gasoline (in the US: typically <15 and <30 ppm, respectively) as well as other fuels, rendering the development of new powerful HDS methods a primary global concern. In 2013, Grubbs and co-workers reported the KO^tBu mediated cleavage of aryl C–O bonds in lignin models in the absence of transition metals using hydrosilanes. Careful inductively coupled plasma mass spectrometry (ICP-MS) analyses of the reagents and reaction mixtures ruled out catalysis with transition metals. We thus became interested in extending this method to sulfur heterocycles of relevance in oil and gas refining applications. Herein, we report that the robust KOtBu/silane-based (that is, KOSi) system is a powerful and effective homogeneous HDS method, which desulfurizes HDS-resistant dibenzothiophenes in good yield and reduces the sulfur content in diesel fuel to remarkably low levels (Fig. 1c)

    Sodium Hydroxide Catalyzed Dehydrocoupling of Alcohols with Hydrosilanes

    Get PDF
    An O–Si bond construction protocol employing abundantly available and inexpensive NaOH as the catalyst is described. The method enables the cross-dehydrogenative coupling of an alcohol and hydrosilane to directly generate the corresponding silyl ether under mild conditions and without the production of stoichiometric salt byproducts. The scope of both coupling partners is excellent, positioning the method for use in complex molecule and materials science applications. A novel Si-based cross-coupling reagent is also reported

    Alkali metal hydroxide–catalyzed C(sp)–H bond silylation

    Get PDF
    Disclosed is a mild, scalable, and chemoselective catalytic cross-dehydrogenative C–H bond functionalization protocol for the construction of C(sp)–Si bonds in a single step. The scope of the alkyne and hydrosilane partners is substantial, providing an entry point into various organosilane building blocks and additionally enabling the discovery of a number of novel synthetic strategies. Remarkably, the optimal catalysts are NaOH and KOH

    A potassium tert-butoxide and hydrosilane system for ultra-deep desulfurization of fuels

    Get PDF
    Hydrodesulfurization (HDS) is the process by which sulfur-containing impurities are removed from petroleum streams, typically using a heterogeneous, sulfided transition metal catalyst under high H_2 pressures and temperatures. Although generally effective, a major obstacle that remains is the desulfurization of highly refractory sulfur-containing heterocycles, such as 4,6-dimethyldibenzothiophene (4,6-Me_2DBT), which are naturally occurring in fossil fuels. Homogeneous HDS strategies using well-defined molecular catalysts have been designed to target these recalcitrant S-heterocycles; however, the formation of stable transition metal sulfide complexes following C–S bond activation has largely prevented catalytic turnover. Here we show that a robust potassium (K) alkoxide (O)/hydrosilane (Si)-based (‘KOSi’) system efficiently desulfurizes refractory sulfur heterocycles. Subjecting sulfur-rich diesel (that is, [S] ∼ 10,000 ppm) to KOSi conditions results in a fuel with [S] ∼ 2 ppm, surpassing ambitious future governmental regulatory goals set for fuel sulfur content in all countries. Fossil fuels contain naturally occurring organosulfur impurities, with quantities varying depending on the type of feedstock. These sulfur-containing organic small molecules poison catalytic converters and generate polluting sulfur dioxides when combusted. Hydrodesulfurization (HDS) is the industrial process by which sulfur impurities are removed from petroleum fractions prior to their use as fuels. Currently, HDS is performed by treating petroleum with H_2 at high pressures and temperatures (that is, 150–2,250 psi and 400 °C) over heterogeneous catalysts such as cobalt-doped molybdenum sulfide supported on alumina (that is, CoMoS_x∕γ-Al_2O_3; Fig. 1a). However, certain organosulfur species, in particular dibenzothiophenes alkylated at positions 4 and 6, are not efficiently removed. Homogeneous strategies employing sophisticated, well-defined transition metal complexes—including those based on platinum, nickel, tungsten, molybdenum, palladium, ruthenium, rhodium, iron, cobalt, and others—have been extensively investigated. While these studies have provided valuable mechanistic insights, several fundamental issues, such as the formation of stable organometallic S–M species upon C–S bond activation by the metal centre (Fig. 1b), generally restrict industrial implementation of such methods. Rare examples of desulfurization of dibenzothiophenes alkylated at the 4 and 6 positions by homogeneous transition metal catalysis utilized either Ni compounds in combination with superstoichiometric alkyl Grignard reagents or Ni or Co phosphoranimide complexes in the presence of superstoichiometric KH. These issues pose a formidable challenge for the development of new HDS methods. Moreover, increasingly strict governmental regulations require limiting the sulfur content in diesel fuel and gasoline (in the US: typically <15 and <30 ppm, respectively) as well as other fuels, rendering the development of new powerful HDS methods a primary global concern. In 2013, Grubbs and co-workers reported the KO^tBu mediated cleavage of aryl C–O bonds in lignin models in the absence of transition metals using hydrosilanes. Careful inductively coupled plasma mass spectrometry (ICP-MS) analyses of the reagents and reaction mixtures ruled out catalysis with transition metals. We thus became interested in extending this method to sulfur heterocycles of relevance in oil and gas refining applications. Herein, we report that the robust KOtBu/silane-based (that is, KOSi) system is a powerful and effective homogeneous HDS method, which desulfurizes HDS-resistant dibenzothiophenes in good yield and reduces the sulfur content in diesel fuel to remarkably low levels (Fig. 1c)

    Global wealth disparities drive adherence to COVID-safe pathways in head and neck cancer surgery

    Get PDF
    Peer reviewe
    corecore