1,056 research outputs found
A Flexible and Modular Framework for Implementing Infrastructures for Global Computing
We present a Java software framework for building infrastructures to support the development of applications for systems where mobility and network awareness are key issues. The framework is particularly useful to develop run-time support for languages oriented towards global computing. It enables platform designers to customize communication protocols and network architectures and guarantees transparency of name management and code mobility in distributed environments. The key features are illustrated by means of a couple of simple case studies
On the Formation of Copper Linear Atomic Suspended Chains
We report high resolution transmission electron microscopy and classical
molecular dynamics simulation results of mechanically stretching copper
nanowires conducting to linear atomic suspended chains (LACs) formation. In
contrast with some previous experimental and theoretical work in literature
that stated that the formation of LACs for copper should not exist our results
showed the existence of LAC for the [111], [110], and [100] crystallographic
directions, being thus the sequence of most probable occurence.Comment: 4 pages, 3 figure
Dynamic remodelling of synapses can occur in the absence of the parent cell body
<p>Abstract</p> <p>Background</p> <p>Retraction of nerve terminals is a characteristic feature of development, injury and insult and may herald many neurodegenerative diseases. Although morphological events have been well characterized, we know relatively little about the nature of the underlying cellular machinery. Evidence suggests a strong local component in determining which neuronal branches and synapses are lost, but a greater understanding of this basic neurological process is required. Here we test the hypothesis that nerve terminals are semi-autonomous and able to rapidly respond to local stimuli in the absence of communication with their parent cell body.</p> <p>Results</p> <p>We used an isolated preparation consisting of distal peripheral nerve stumps, associated nerve terminals and post-synaptic muscle fibres, maintained in-vitro for up to 3 hrs. In this system synapses are intact but the presynaptic nerve terminal is disconnected from its cell soma. In control preparations synapses were stable for extended periods and did not undergo Wallerian degneration. In contrast, addition of purines triggers rapid changes at synapses. Using fluorescence and electron microscopy we observe ultrastructural and gross morphological events consistent with nerve terminal retraction. We find no evidence of Wallerian or Wallerian-like degeneration in these preparations. Pharmacological experiments implicate pre-synaptic P2X7 receptor subunits as key mediators of these events.</p> <p>Conclusion</p> <p>The data presented suggest; first that isolated nerve terminals are able to regulate connectivity independent of signals from the cell body, second that synapses exist in a dynamic state, poised to shift from stability to loss by activating intrinsic mechanisms and molecules, and third that local purines acting at purinergic receptors can trigger these events. A role for ATP receptors in this is not surprising since they are frequently activated during cellular injury, when adenosine tri-phosphate is released from damaged cells. Local control demands that the elements necessary to drive retraction are constitutively present. We hypothesize that pre-existing scaffolds of molecular motors and cytoskeletal proteins could provide the dynamism required to drive such structural changes in nerve terminals in the absence of the cell body.</p
Early growth response gene-2 (Egr-2) regulates the development of B and T cells
The study was supported by Arthritis Research UK.
Copyright @ 2011 Li et al.BACKGROUND: Understanding of how transcription factors are involved in lymphocyte development still remains a challenge. It has been shown that Egr-2 deficiency results in impaired NKT cell development and defective positive selection of T cells. Here we investigated the development of T, B and NKT cells in Egr-2 transgenic mice and the roles in the regulation of distinct stages of B and T cell development. METHODS AND FINDINGS: The expression of Egr1, 2 and 3 were analysed at different stages of T and B cell development by RT-PCT and results showed that the expression was strictly regulated at different stages. Forced expression of Egr-2 in CD2+ lymphocytes resulted in a severe reduction of CD4+CD8+ (DP) cells in thymus and pro-B cells in bone marrow, which was associated with reduced expression of Notch1 in ISP thymocytes and Pax5 in pro-B cells, suggesting that retraction of Egr-2 at the ISP and pro-B cell stages is important for the activation of lineage differentiation programs. In contrast to reduction of DP and pro-B cells, Egr-2 enhanced the maturation of DP cells into single positive (SP) T and NKT cells in thymus, and immature B cells into mature B cells in bone marrow. CONCLUSIONS: Our results demonstrate that Egr-2 expressed in restricted stages of lymphocyte development plays a dynamic, but similar role for the development of T, NKT and B cells.This article is provided by the Brunel Open Access publishing fund
Quantum Conductance in Silver Nanowires: correlation between atomic structure and transport properties
We have analyzed the atomic arrangements and quantum conductance of silver
nanowires generated by mechanical elongation. The surface properties of Ag
induce unexpected structural properties, as for example, predominance of high
aspect ratio rod-like wires. The structural behavior was used to understand the
Ag quantum conductance data and the proposed correlation was confirmed by means
of theoretical calculations. These results emphasize that the conductance of
metal point contacts is determined by the preferred atomic structures and, that
atomistic descriptions are essential to interpret the quantum transport
behavior of metal nanostructures.Comment: 4 pages, 4 figure
Observation of the Smallest Metal Nanotube with Square-cross-section
Understanding the mechanical properties of nanoscale systems requires a range
of measurement techniques and theoretical approaches to gather the relevant
physical and chemical information. The arrangements of atoms in nanostructures
and macroscopic matter can be different, principally due to the role of surface
energy, but the interplay between atomic and electronic structure in
association with applied mechanical stress can also lead to surprising
differences. For example, metastable structures such as suspended chains of
atoms and helical wires have been produced by the stretching of metal
junctions. Here we report the spontaneous formation of the smallest possible
metal nanotube with a square cross-section during the elongation of silver
nanocontacts. Ab initio calculations and molecular simulations indicate that
the hollow wire forms because this configuration allows the surface energy to
be minimized, and also generates a soft structure capable of absorbing a huge
tensile deformation
Aquaporin-2 Promoter Is Synergistically Regulated by Nitric Oxide and Nuclear Factor of Activated T Cells
www.karger.com/nne This is an Open Access article licensed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License (www.karger.com/OA-license), applicable to the online version of the article only. Distribution for non-commercial purposes only
Enabling Personalized Process Schedules with Time-aware Process Views
Companies increasingly adopt process-aware information systems (PAISs) to model, enact, monitor, and evolve their business processes. Although the proper handling of temporal constraints (e.g., deadlines and minimum time lags between activities) is crucial for many application domains, existing PAISs vary significantly regarding the support of the temporal perspective of a business process. In previous work, we introduced characteristic time patterns for specifying the temporal perspective of PAISs. However, time-aware process schemas might be complex and hard to understand for end-users. To enable their proper visualization, therefore, this paper introduces an approach for transforming time-aware process schemas into enhanced Gantt charts. Based on this, a method for creating personalized process schedules using process views is suggested. Overall, the presented approach enables users to easily understand and monitor time-aware processes in PAISs
A New Linear Logic for Deadlock-Free Session-Typed Processes
The π -calculus, viewed as a core concurrent programming language, has been used as the target of much research on type systems for concurrency. In this paper we propose a new type system for deadlock-free session-typed π -calculus processes, by integrating two separate lines of work. The first is the propositions-as-types approach by Caires and Pfenning, which provides a linear logic foundation for session types and guarantees deadlock-freedom by forbidding cyclic process connections. The second is Kobayashi’s approach in which types are annotated with priorities so that the type system can check whether or not processes contain genuine cyclic dependencies between communication operations. We combine these two techniques for the first time, and define a new and more expressive variant of classical linear logic with a proof assignment that gives a session type system with Kobayashi-style priorities. This can be seen in three ways: (i) as a new linear logic in which cyclic structures can be derived and a CYCLE -elimination theorem generalises CUT -elimination; (ii) as a logically-based session type system, which is more expressive than Caires and Pfenning’s; (iii) as a logical foundation for Kobayashi’s system, bringing it into the sphere of the propositions-as-types paradigm
- …