58 research outputs found

    Reduction of cardiac imaging tests during the COVID-19 pandemic: The case of Italy. Findings from the IAEA Non-invasive Cardiology Protocol Survey on COVID-19 (INCAPS COVID)

    Get PDF
    BACKGROUND: In early 2020, COVID-19 massively hit Italy, earlier and harder than any other European country. This caused a series of strict containment measures, aimed at blocking the spread of the pandemic. Healthcare delivery was also affected when resources were diverted towards care of COVID-19 patients, including intensive care wards. AIM OF THE STUDY: The aim is assessing the impact of COVID-19 on cardiac imaging in Italy, compare to the Rest of Europe (RoE) and the World (RoW). METHODS: A global survey was conducted in May–June 2020 worldwide, through a questionnaire distributed online. The survey covered three periods: March and April 2020, and March 2019. Data from 52 Italian centres, a subset of the 909 participating centres from 108 countries, were analyzed. RESULTS: In Italy, volumes decreased by 67% in March 2020, compared to March 2019, as opposed to a significantly lower decrease (p < 0.001) in RoE and RoW (41% and 40%, respectively). A further decrease from March 2020 to April 2020 summed up to 76% for the North, 77% for the Centre and 86% for the South. When compared to the RoE and RoW, this further decrease from March 2020 to April 2020 in Italy was significantly less (p = 0.005), most likely reflecting the earlier effects of the containment measures in Italy, taken earlier than anywhere else in the West. CONCLUSIONS: The COVID-19 pandemic massively hit Italy and caused a disruption of healthcare services, including cardiac imaging studies. This raises concern about the medium- and long-term consequences for the high number of patients who were denied timely diagnoses and the subsequent lifesaving therapies and procedures

    World Heart Federation Consensus on Transthyretin Amyloidosis Cardiomyopathy (ATTR-CM)

    Get PDF
    Transthyretin amyloid cardiomyopathy (ATTR-CM) is a progressive and fatal condition that requires early diagnosis, management, and specific treatment. The availability of new disease-modifying therapies has made successful treatment a reality. Transthyretin amyloid cardiomyopathy can be either age-related (wild-type form) or caused by mutations in the TTR gene (genetic, hereditary forms). It is a systemic disease, and while the genetic forms may exhibit a variety of symptoms, a predominant cardiac phenotype is often present. This document aims to provide an overview of ATTR-CM amyloidosis focusing on cardiac involvement, which is the most critical factor for prognosis. It will discuss the available tools for early diagnosis and patient management, given that specific treatments are more effective in the early stages of the disease, and will highlight the importance of a multidisciplinary approach and of specialized amyloidosis centres. To accomplish these goals, the World Heart Federation assembled a panel of 18 expert clinicians specialized in TTR amyloidosis from 13 countries, along with a representative from the Amyloidosis Alliance, a patient advocacy group. This document is based on a review of published literature, expert opinions, registries data, patients’ perspectives, treatment options, and ongoing developments, as well as the progress made possible via the existence of centres of excellence. From the patients’ perspective, increasing disease awareness is crucial to achieving an early and accurate diagnosis. Patients also seek to receive care at specialized amyloidosis centres and be fully informed about their treatment and prognosis

    World Heart Federation consensus on transthyretin amyloidosis cardiomyopathy (ATTR-CM)

    Get PDF
    COPYRIGHT: © 2023 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. See http://creativecommons.org/ licenses/by/4.0/.Transthyretin amyloid cardiomyopathy (ATTR-CM) is a progressive and fatal condition that requires early diagnosis, management, and specific treatment. The availability of new disease-modifying therapies has made successful treatment a reality. Transthyretin amyloid cardiomyopathy can be either age-related (wild-type form) or caused by mutations in the TTR gene (genetic, hereditary forms). It is a systemic disease, and while the genetic forms may exhibit a variety of symptoms, a predominant cardiac phenotype is often present. This document aims to provide an overview of ATTR-CM amyloidosis focusing on cardiac involvement, which is the most critical factor for prognosis. It will discuss the available tools for early diagnosis and patient management, given that specific treatments are more effective in the early stages of the disease, and will highlight the importance of a multidisciplinary approach and of specialized amyloidosis centres. To accomplish these goals, the World Heart Federation assembled a panel of 18 expert clinicians specialized in TTR amyloidosis from 13 countries, along with a representative from the Amyloidosis Alliance, a patient advocacy group. This document is based on a review of published literature, expert opinions, registries data, patients' perspectives, treatment options, and ongoing developments, as well as the progress made possible via the existence of centres of excellence. From the patients' perspective, increasing disease awareness is crucial to achieving an early and accurate diagnosis. Patients also seek to receive care at specialized amyloidosis centres and be fully informed about their treatment and prognosis.info:eu-repo/semantics/publishedVersio

    Disparities in Non-invasive Traditional and Advanced Testing for Coronary Artery Disease: Findings from the INCAPS-COVID 2 Study

    Get PDF
    The COVID-19 pandemic disrupted delivery of cardiovascular care including non-invasive testing protocols and test selection for evaluation of coronary artery disease (CAD). Trends in test selection among traditional versus advanced noninvasive tests for CAD during the pandemic and among countries of varying income status have not been well studied. The International Atomic Energy Agency conducted a global survey to assess pandemic-related changes in the practice of cardiovascular diagnostic testing. Site procedural volumes for noninvasive tests to evaluate CAD from March 2019 (pre-pandemic), April 2020 (onset), and April 2021 (initial recovery) were collected. We considered traditional testing modalities exercise electrocardiography (ECG), stress echocardiography, and stress single-photon emission computed tomography (SPECT), and advanced testing modalities stress cardiac magnetic resonance (CMR), coronary computed tomography angiography (CCTA), and stress positron emission tomography (PET). Survey data were obtained from 669 centers in 107 countries, reporting the performance of 367,933 studies for CAD during the study period. Compared to 2019, traditional tests were performed 14% less frequently (recovery rate 82%) in 2021 versus advanced tests which were performed 15% more frequently (128% recovery rate). CCTA, stress CMR and stress PET showed 14%, 25%, and 25% increases in volumes from 2019 to 2021, respectively. The increase in advanced testing was isolated to high- and upper-middle-income countries, with 132% recovery in advanced tests by 2021 as compared to 55% in lower-income nations. The COVID-19 pandemic exacerbated economic disparities in CAD testing practice between wealthy and poorer countries. Greater recovery rates and even new growth was observed for advanced imaging modalities but this growth was restricted to wealthy countries. Efforts to reduce practice variations in CAD testing due to economic status are warranted.<br/

    Recovery Rates of Diagnostic Cardiac Procedural Volume in Oceania 1 Year Into COVID-19: The IAEA Non-Invasive Cardiology Protocol Survey on COVID-19 (INCAPS COVID 2)

    Get PDF
    AimThe aim of this study was to assess the recovery rates of diagnostic cardiac procedure volumes in the Oceania Region, midway through the coronavirus disease 2019 (COVID-19) pandemic.MethodsA survey was performed comparing procedure volumes between March 2019 (pre-pandemic), April 2020 (during first wave of COVID-19 pandemic), and April 2021 (1 year into the COVID-19 pandemic). A total of 31 health care facilities within Oceania that perform cardiac diagnostic procedures were surveyed, including a mixture of metropolitan and regional, hospital and outpatient, public and private sites, as well as teaching and non-teaching hospitals. A comparison was made with 549 centres in 96 countries in the rest of the world (RoW) outside of Oceania. The total number and median percentage change in procedure volume were measured between the three timepoints, compared by test type and by facility.ResultsA total of 11,902 cardiac diagnostic procedures were performed in Oceania in April 2021 as compared with 11,835 pre-pandemic in March 2019 and 5,986 in April 2020; whereas, in the RoW, 499,079 procedures were performed in April 2021 compared with 497,615 pre-pandemic in March 2019 and 179,014 in April 2020. There was no significant difference in the median recovery rates for total procedure volumes between Oceania (−6%) and the RoW (−3%) (p=0.81). While there was no statistically significant difference in percentage recovery been functional ischaemia testing and anatomical coronary testing in Oceania as compared with the RoW, there was, however, a suggestion of poorer recovery in anatomical coronary testing in Oceania as compared with the RoW (CT coronary angiography -16% in Oceania vs −1% in RoW, and invasive coronary angiography −20% in Oceania vs −9% in RoW). There was no statistically significant difference in recovery rates in procedure volume between metropolitan vs regional (p=0.44), public vs private (p=0.92), hospital vs outpatient (p=0.79), or teaching vs non-teaching centres (p=0.73).ConclusionsTotal cardiology procedure volumes in Oceania normalised 1 year post-pandemic compared to pre-pandemic levels, with no significant difference compared with the RoW and between the different types of health care facilities. <br/

    Current worldwide nuclear cardiology practices and radiation exposure: results from the 65 country IAEA Nuclear Cardiology Protocols Cross-Sectional Study (INCAPS)

    Get PDF
    Aims To characterize patient radiation doses from nuclear myocardial perfusion imaging (MPI) and the use of radiation-optimizing ‘best practices' worldwide, and to evaluate the relationship between laboratory use of best practices and patient radiation dose. Methods and results We conducted an observational cross-sectional study of protocols used for all 7911 MPI studies performed in 308 nuclear cardiology laboratories in 65 countries for a single week in March-April 2013. Eight ‘best practices' relating to radiation exposure were identified a priori by an expert committee, and a radiation-related quality index (QI) devised indicating the number of best practices used by a laboratory. Patient radiation effective dose (ED) ranged between 0.8 and 35.6 mSv (median 10.0 mSv). Average laboratory ED ranged from 2.2 to 24.4 mSv (median 10.4 mSv); only 91 (30%) laboratories achieved the median ED ≤ 9 mSv recommended by guidelines. Laboratory QIs ranged from 2 to 8 (median 5). Both ED and QI differed significantly between laboratories, countries, and world regions. The lowest median ED (8.0 mSv), in Europe, coincided with high best-practice adherence (mean laboratory QI 6.2). The highest doses (median 12.1 mSv) and low QI (4.9) occurred in Latin America. In hierarchical regression modelling, patients undergoing MPI at laboratories following more ‘best practices' had lower EDs. Conclusion Marked worldwide variation exists in radiation safety practices pertaining to MPI, with targeted EDs currently achieved in a minority of laboratories. The significant relationship between best-practice implementation and lower doses indicates numerous opportunities to reduce radiation exposure from MPI globall

    Worldwide Disparities in Recovery of Cardiac Testing 1 Year Into COVID-19

    Get PDF
    FUNDING SUPPORT AND AUTHOR DISCLOSURES Dr Williams is supported by the British Heart Foundation (FS/ICRF/ 20/26002). Dr Einstein has received speaker fees from Ionetix; has received consulting fees from W. L. Gore & Associates; has received authorship fees from Wolters Kluwer Healthcare – UpToDate; and has received grants or grants pending to his institution from Attralus, Canon Medical Systems, Eidos Therapeutics, GE Healthcare, Pfizer, Roche Medical Systems, W. L. Gore & Associates, and XyloCor Ther- apeutics. Dr Williams has received speaker fees from Canon Medical Systems. Dr Dorbala has received honoraria from Pfizer and GE Healthcare; and has received grants to her institution from Pfizer and GE Healthcare. Dr Sinitsyn has received congress speaker honoraria from Bayer, GE Healthcare, Siemens, and Philips. Dr Kudo has received research grants from Nihon Medi-physics and FUJIFILM Toyama Chemical. Dr Bucciarelli-Ducci is CEO (part-time) of the So- ciety for Cardiovascular Magnetic Resonance; and has received speaker fees from Circle Cardiovascular Imaging, Bayer, and Siemens Healthineers. All other authors have reported that they have no re- lationships relevant to the contents of this paper to disclose.Peer reviewedPublisher PD

    International Impact of COVID-19 on the Diagnosis of Heart Disease

    Get PDF
    BACKGROUND The coronavirus disease 2019 (COVID-19) pandemic has adversely affected diagnosis and treatment of noncommunicable diseases. Its effects on delivery of diagnostic care for cardiovascular disease, which remains the leading cause of death worldwide, have not been quantified. OBJECTIVES The study sought to assess COVID-19's impact on global cardiovascular diagnostic procedural volumes and safety practices. METHODS The International Atomic Energy Agency conducted a worldwide survey assessing alterations in cardiovascular procedure volumes and safety practices resulting from COVID-19. Noninvasive and invasive cardiac testing volumes were obtained from participating sites for March and April 2020 and compared with those from March 2019. Availability of personal protective equipment and pandemic-related testing practice changes were ascertained. RESULTS Surveys were submitted from 909 inpatient and outpatient centers performing cardiac diagnostic procedures, in 108 countries. Procedure volumes decreased 42% from March 2019 to March 2020, and 64% from March 2019 to April 2020. Transthoracic echocardiography decreased by 59%, transesophageal echocardiography 76%, and stress tests 78%, which varied between stress modalities. Coronary angiography (invasive or computed tomography) decreased 55% (p < 0.001 for each procedure). In multivariable regression, significantly greater reduction in procedures occurred for centers in countries with lower gross domestic product. Location in a low-income and lower-middle-income country was associated with an additional 22% reduction in cardiac procedures and less availability of personal protective equipment and telehealth. CONCLUSIONS COVID-19 was associated with a significant and abrupt reduction in cardiovascular diagnostic testing across the globe, especially affecting the world's economically challenged. Further study of cardiovascular outcomes and COVID-19-related changes in care delivery is warranted

    Current worldwide nuclear cardiology practices and radiation exposure : results from the 65 country IAEA Nuclear Cardiology Protocols Cross-Sectional Study (INCAPS)

    Get PDF
    To characterize patient radiation doses from nuclear myocardial perfusion imaging (MPI) and the use of radiation-optimizing 'best practices' worldwide, and to evaluate the relationship between laboratory use of best practices and patient radiation dose. We conducted an observational cross-sectional study of protocols used for all 7911 MPI studies performed in 308 nuclear cardiology laboratories in 65 countries for a single week in March-April 2013. Eight 'best practices' relating to radiation exposure were identified a priori by an expert committee, and a radiation-related quality index (QI) devised indicating the number of best practices used by a laboratory. Patient radiation effective dose (ED) ranged between 0.8 and 35.6 mSv (median 10.0 mSv). Average laboratory ED ranged from 2.2 to 24.4 mSv (median 10.4 mSv); only 91 (30%) laboratories achieved the median ED ≤ 9 mSv recommended by guidelines. Laboratory QIs ranged from 2 to 8 (median 5). Both ED and QI differed significantly between laboratories, countries, and world regions. The lowest median ED (8.0 mSv), in Europe, coincided with high best-practice adherence (mean laboratory QI 6.2). The highest doses (median 12.1 mSv) and low QI (4.9) occurred in Latin America. In hierarchical regression modelling, patients undergoing MPI at laboratories following more 'best practices' had lower EDs. Marked worldwide variation exists in radiation safety practices pertaining to MPI, with targeted EDs currently achieved in a minority of laboratories. The significant relationship between best-practice implementation and lower doses indicates numerous opportunities to reduce radiation exposure from MPI globally
    corecore