24 research outputs found

    Optoelectronic Characterisation of Intermediate Band Solar Cells by Photoreflectance Comparison to Other Advanced Architectures.

    Get PDF
    The fabrication and design of novel materials and devices for advanced photovoltaics, like the intermediate-band solar cell (IBSC), requires the use of specific characterization tools providing information about their optoelectronic properties. We have tested the suitability of photoreflectance for the characterization of IBSC prototypes based on quantum dots and compared the results obtained with those predicted by the theory. Nonidealities in operative devices have been identified and detailed information has been obtained about the electronic structure of the materials. We have compared PR spectra of IBSCs with those obtained from alternative device architectures, namely a triple-junction solar cell and a multi-quantum well structure. Some general conclusions are drawn demonstrating the potential of the technique

    CPVMatch - Concentrating photovoltaic modules using advanced technologies and cells for highest efficiencies

    Get PDF
    This paper presents the project Concentrating Photovoltaic modules using advanced technologies and cells for highest efficiencies (CPVMatch), which is funded from the European Union’s Horizon 2020 research and innovation programme. V multi-junction solar cells and CPV modules. Concerning cells, novel wafer bonded four-junction solar cells made of GaInP/GaAs//GaInAs/Ge are optimized with the target of reaching 48% efficiency under concentration at the end of the project. Moreover, multi-junction solar cell technologies with advanced materials - like ternary IV element mixtures (i.e. SiGeSn) and nanostructured anti-reflective coatings - are investigated. Concerning CPV modules the project focuses on both Fresnel-based and mirror-based technologies with a target efficiency of 40% under high concentrations beyond 800x. Achromatic Fresnel lenses for improved light management without secondary optics are investigated. In addition, smart, mirror-based HCPV modules are developed, which include a new mirror-based design, the integration of high efficiency, low cost DC/DC converters and an intelligent tracking sensor (PSD sensor) at module level. A profound life-cycle and environmental assessment and the development of adapted characterization methods of new multi-junction cells and HCPV modules complete the work plan of CPVMatch

    Preliminary temperature accelerated life test (ALT) on lattice mismatched triple-junction concentrator solar cells-on-carriers

    Full text link
    A temperature accelerated life test on concentrator lattice mismatched Ga0.37In0.63P/Ga0.83In0.17As/Ge triple-junction solar cells-on-carrier is being carried out. The solar cells have been tested at three different temperatures: 125, 145 and 165°C and the nominal photo-current condition (500X) is emulated by injecting current in darkness. The final objective of these tests is to evaluate the reliability, warranty period, and failure mechanism of these solar cells in a moderate period of time. Up to now only the test at 165°C has finished. Therefore, we cannot provide complete reliability information, but we have carried out preliminary data and failure analysis with the current results

    High concentration PV system

    Get PDF
    The aim of the European funded project HICON (High Concentration PV Power Systems) has been to develop, set up and test a new high concentration – 1000x or more – PV system. This system uses an actively cooled large-area receiver consisting of III-V solar cells. Two technology fields have been integrated: The high concentration of the sunlight has been obtained by using technologies experienced in solar thermal systems like parabolic dishes or tower systems. The high concentration photovoltaic receiver is based on the III-V solar cell technology. To deal with the high concentration, Monolithic Integrated Modules (MIMs) [1-3] have been further developed and assembled to Compact Concentrator Modules (CCM). The CCM prototypes have been tested in a solar furnace (PSA) and in a parabolic dish (BGU). The results of the project will be presented in this paper.peer-reviewe

    Toward high-efficiency hybrid (electricity and heat) high concentration photovoltaic systems

    Get PDF
    Paper presented to the 3rd Southern African Solar Energy Conference, South Africa, 11-13 May, 2015.Photovoltaic power generation is a growing renewable primary energy source, expected to assume a major role as we strive toward fossil fuel free energy production. However, the rather low photovoltaic efficiencies limit the conversion of solar radiation into useful power output. Hybrid systems extend the functionality of concentrating photovoltaics (CPV) from simply generating electricity, to providing simultaneously electricity and heat. The utilization of otherwise wasted heat significantly enhances the overall system efficiency and boosts the economic value of the generated power output. The system presented in this lecture is the outcome of collaborative research in my research group, with the IBM research lab in Zurich and the Fraunhofer Institute for solar energy systems in Freiburg, Germany. It consists of a scalable hybrid photovoltaic-thermal receiver package, cooled with an integrated high performance microchannel heat sink we initially developed and optimized for the efficient cooling of electronics. The package can be operated at elevated temperatures due to its overall low thermal resistance between solar cell and coolant. The effect of the harvested elevated coolant temperature on the photovoltaic efficiency is investigated. The higher-level available heat can be suitable for sophisticated thermal applications such as space heating, desalination or cooling (polygeneration approaches). A total hybrid conversion efficiency of solar radiation into useful power of 60% has been realized. The exergy content of the overall output power was increased by 50% through the exergy content of the extracted heat.dc201

    NGCPV: A new generation of concentrator photovoltaic cells, modules and systems

    Get PDF
    This work introduces the lines of research that the NGCPV project is pursuing and some of the first results obtained. Sponsored by the European Commission under the 7th Framework Program and NEDO (Japan) within the first collaborative call launched by both Bodies in the field of energy, NGCPV project aims at approaching the cost of the photovoltaic kWh to competitive prices in the framework of high concentration photovoltaics (CPV) by exploring the development and assessment of concentrator photovoltaic solar cells and modules, novel materials and new solar cell structures as well as methods and procedures to standardize measurement technology for concentrator photovoltaic cells and modules. More specific objectives we are facing are: (1) to manufacture a cell prototype with an efficiency of at least 45% and to undertake an experimental activity, (2) to manufacture a 35% module prototype and elaborate the roadmap towards the achievement of 40%, (3) to develop reliable characterization techniques for III-V materials and quantum structures, (4) to achieve and agreement within 5% in the characterization of CPV cells and modules in a round robin scheme, and (5) to evaluate the potential of new materials, devices technologies and quantum nanostructures to improve the efficiency of solar cells for CPV

    NGCPV: a new generation of concentrator photovoltaic cells, modules and systems

    Get PDF
    Starting on June 2011, NGCPV is the first project funded jointly between the European Commission (EC) and the New Energy and Industrial Technology Development Organization (NEDO) of Japan to research on new generation concentration photovoltaics (CPV). The Project, through a collaborative research between seven European and nine Japanese leading research centers in the field of CPV, aims at lowering the cost of the CPVproduced photovoltaic kWh down to 5 ?cents. The main objective of the project is to improve the present concentrator cell, module and system efficiency, as well as developing advanced characterization tools for CPV components and systems. As particular targets, the project aims at achieving a cell efficiency of at least 45% and a CPV module with an efficiency greater than 35%. This paper describes the R&D activities that are being carried out within the NGCPV project and summarizes some of the most relevant results that have already been attained, for instance: the manufacturing of a 44.4% world record efficiency triple junction solar cell (by Sharp Corp.) and the installation of a 50 kWp experimental CPV plant in Spain, which will be used to obtain accurate forecasts of the energy produced at system level

    Component cell-based restriction of spectral conditions and the impact on CPV module power rating

    No full text
    One approach to consider the prevailing spectral conditions when performing CPV module power ratings according to the standard IEC 62670‐3 is based on spectral matching ratios (SMRs) determined by the means of component cell sensors. In this work, an uncertainty analysis of the SMR approach is performed based on a dataset of spectral irradiances created with SMARTS2. Using these illumination spectra, the respective efficiencies of multijunction solar cells with different cell architectures are calculated. These efficiencies were used to analyze the influence of different component cell sensors and SMR filtering methods. The 3 main findings of this work are as follows. First, component cells based on the lattice‐matched triple‐junction (LM3J) cell are suitable for restricting spectral conditions and are qualified for the standardized power rating of CPV modules—even if the CPV module is using multijunction cells other than LM3J. Second, a filtering of all 3 SMRs with ±3.0% of unity results in the worst case scenario in an underestimation of −1.7% and overestimation of +2.4% compared to AM1.5d efficiency. Third, there is no benefit in matching the component cells to the module cell in respect to the measurement uncertainty

    Perspektiven für das Zusammenspiel von Energieeffizienz und Erneuerbaren sowie ihre Einbindung in das Energiesystem

    Get PDF
    In diesem Jahr wurden bereits mehr als 20 % des Strombedarfs und 11 % des Primärenergieverbrauchs in Deutschland mit erneuerbaren Energien gedeckt. Dieser Anteil muss weiter steigen bis erneuerbare Energien den deutschen Energiebedarf vollständig decken. Entscheidend für die Umsetzung dieses Ziels sind vor allem eine wesentliche Steigerung der Energieeffizienz sowie ein intelligentes Zusammenspiel von Erzeugung und Verbrauch. Dieser Beitrag gibt einen Überblick über den Status und die Perspektiven zur Energieeffizienzsteigerung und für die Nutzung der verschiedenen erneuerbaren Energiequellen. Darauf aufbauend wird aufgezeigt, wie das Energiesystem für einen hohen Anteil an erneuerbaren Energien um- und ausgebaut werden muss
    corecore