816 research outputs found
C1 inhibitor deficiency: 2014 United Kingdom consensus document
C1 inhibitor deficiency is a rare disorder manifesting with recurrent attacks of disabling and potentially life-threatening angioedema. Here we present an updated 2014 United Kingdom consensus document for the management of C1 inhibitor-deficient patients, representing a joint venture between the United Kingdom Primary Immunodeficiency Network and Hereditary Angioedema UK. To develop the consensus, we assembled a multi-disciplinary steering group of clinicians, nurses and a patient representative. This steering group first met in 2012, developing a total of 48 recommendations across 11 themes. The statements were distributed to relevant clinicians and a representative group of patients to be scored for agreement on a Likert scale. All 48 statements achieved a high degree of consensus, indicating strong alignment of opinion. The recommendations have evolved significantly since the 2005 document, with particularly notable developments including an improved evidence base to guide dosing and indications for acute treatment, greater emphasis on home therapy for acute attacks and a strong focus on service organisation. This article is protected by copyright. All rights reserved
Comparison of Bond Character in Hydrocarbons and Fullerenes
We present a comparison of the bond polarizabilities for carbon-carbon bonds
in hydrocarbons and fullerenes, using two different models for the fullerene
Raman spectrum and the results of Raman measurements on ethane and ethylene. We
find that the polarizabilities for single bonds in fullerenes and hydrocarbons
compare well, while the double bonds in fullerenes have greater polarizability
than in ethylene.Comment: 7 pages, no figures, uses RevTeX. (To appear in Phys. Rev. B.
Quasi one dimensional He inside carbon nanotubes
We report results of diffusion Monte Carlo calculations for both He
absorbed in a narrow single walled carbon nanotube (R = 3.42 \AA) and strictly
one dimensional He. Inside the tube, the binding energy of liquid He is
approximately three times larger than on planar graphite. At low linear
densities, He in a nanotube is an experimental realization of a
one-dimensional quantum fluid. However, when the density increases the
structural and energetic properties of both systems differ. At high density, a
quasi-continuous liquid-solid phase transition is observed in both cases.Comment: 11 pages, 3ps figures, to appear in Phys. Rev. B (RC
Pressure dependence of the thermoelectric power of single-walled carbon nanotubes
We have measured the thermoelectric power (S) of high purity single-walled
carbon nanotube mats as a function of temperature at various hydrostatic
pressures up to 2.0 GPa. The thermoelectric power is positive, and it increases
in a monotonic way with increasing temperature for all pressures. The low
temperature (T < 40 K) linear thermoelectric power is pressure independent and
is characteristic for metallic nanotubes. At higher temperatures it is enhanced
and though S(T) is linear again above about 100 K it has a nonzero intercept.
This enhancement is strongly pressure dependent and is related to the change of
the phonon population with hydrostatic pressure.Comment: 4 pages, 3 figure
Midinfrared Conductivity in Orientationally Disordered Doped Fullerides
The coupling between the intramolecular vibrational modes and the doped
conduction electrons in is studied by a calculation of the
electronic contributions to the phonon self energies. The calculations are
carried out for an orientationally ordered reference solid with symmetry and for a model with quenched orientational disorder on the
fullerene sites. In both cases, the dispersion and symmetry of the renormalized
modes is governed by the electronic contributions. The current current
correlation functions and frequency dependent conductivity through the
midinfrared are calculated for both models. In the disordered structures, the
renormalized modes derived from even parity intramolecular phonons are resonant
with the dipole excited single particle spectrum, and modulate the predicted
midinfrared conductivity. The spectra for this coupled system are calculated
for several recently proposed microscopic models for the electron phonon
coupling, and a comparison is made with recent experimental data which
demonstrate this effect.Comment: 32 pages + 9 postscript figures (on request), REVTeX 3.
Size Effects in Carbon Nanotubes
The inter-shell spacing of multi-walled carbon nanotubes was determined by
analyzing the high resolution transmission electron microscopy images of these
nanotubes. For the nanotubes that were studied, the inter-shell spacing
is found to range from 0.34 to 0.39 nm, increasing with
decreasing tube diameter. A model based on the results from real space image
analysis is used to explain the variation in inter-shell spacings obtained from
reciprocal space periodicity analysis. The increase in inter-shell spacing with
decreased nanotube diameter is attributed to the high curvature, resulting in
an increased repulsive force, associated with the decreased diameter of the
nanotube shells.Comment: 4 pages. RevTeX. 4 figure
Bundling up carbon nanotubes through Wigner defects
We show, using ab initio total energy density functional theory, that the
so-called Wigner defects, an interstitial carbon atom right besides a vacancy,
which are present in irradiated graphite can also exist in bundles of carbon
nanotubes. Due to the geometrical structure of a nanotube, however, this defect
has a rather low formation energy, lower than the vacancy itself, suggesting
that it may be one of the most important defects that are created after
electron or ion irradiation. Moreover, they form a strong link between the
nanotubes in bundles, increasing their shear modulus by a sizeable amount,
clearly indicating its importance for the mechanical properties of nanotube
bundles.Comment: 5 pages and 4 figure
Field-effect transistors assembled from functionalized carbon nanotubes
We have fabricated field effect transistors from carbon nanotubes using a
novel selective placement scheme. We use carbon nanotubes that are covalently
bound to molecules containing hydroxamic acid functionality. The functionalized
nanotubes bind strongly to basic metal oxide surfaces, but not to silicon
dioxide. Upon annealing, the functionalization is removed, restoring the
electronic properties of the nanotubes. The devices we have fabricated show
excellent electrical characteristics.Comment: 5 pages, 6 figure
Vibrational spectra of C60C8H8 and C70C8H8 in the rotor-stator and polymer phases
C60-C8H8 and C70-C8H8 are prototypes of rotor-stator cocrystals. We present
infrared and Raman spectra of these materials and show how the rotor-stator
nature is reflected in their vibrational properties. We measured the
vibrational spectra of the polymer phases poly(C60C8H8) and poly(C70C8H8)
resulting from a solid state reaction occurring on heating. Based on the
spectra we propose a connection pattern for the fullerene in poly(C60C8H8),
where the symmetry of the C60 is D2h. On illuminating the C60-C8H8 cocrystal
with green or blue light a photochemical reaction was observed leading to a
similar product to that of the thermal polymerization.Comment: 26 pages, 8 figures, to appear in Journal of Physical Chemistry B 2nd
version: minor changes in wording, accepted version by journa
Electronic transport, structure, and energetics of endohedral Gd@C82 metallofullerenes
Electronic structure and transport properties of the fullerene C and
the metallofullerene Gd@C are investigated with density functional
theory and the Landauer-Buttiker formalism. The ground state structure of
Gd@C is found to have the Gd atom below the C-C bond on the C
molecular axis of C. Insertion of Gd into C deforms the carbon
chain in the vicinity of the Gd atoms. Significant overlap of the electron
distribution is found between Gd and the C cage, with the transferred Gd
electron density localized mainly on the nearest carbon atoms. This charge
localization reduces some of the conducting channels for the transport, causing
a reduction in the conductivity of the Gd@C species relative to the
empty C molecule. The electron transport across the metallofullerene is
found to be insensitive to the spin state of the Gd atom.Comment: 13 pages, 7 figures, submitted Nano Let
- …