43 research outputs found

    Molecular study on Pasteurella multocida and Mannheimia granulomatis from Kenyan Camels (Camelus dromedarius)

    Get PDF
    Background Outbreaks of a Haemorrhagic Septicaemia (HS) like disease causing large mortalities in camels (Camelus dromedarius) in Asia and in Africa have been reported since 1890. Yet the aetiology of this condition remains elusive. This study is the first to apply state of the art molecular methods to shed light on the nasopharyngeal carrier state of Pasteurellaceae in camels. The study focused on HS causing Pasteurella multocida capsular types B and E. Other Pasteurellaceae, implicated in common respiratory infections of animals, were also investigated. Methods In 2007 and 2008, 388 nasopharyngeal swabs were collected at 12 locations in North Kenya from 246 clinically healthy camels in 81 herds that had been affected by HS-like disease. Swabs were used to cultivate bacteria on blood agar and to extract DNA for subsequent PCR analysis targeting P. multocida and Mannheimia-specific gene sequences. Results Forty-five samples were positive for P. multocida genes kmt and psl and for the P. multocida Haemorrhagic Septicaemia (HS) specific sequences KTSP61/KTT72 but lacked HS-associated capsular type B and E genes capB and capE. This indicates circulation of HS strains in camels that lack established capsular types. Sequence analysis of the partial 16S rRNA gene identified 17 nasal swab isolates as 99% identical with Mannheimia granulomatis, demonstrating a hitherto unrecognised active carrier state for M. granulomatis or a closely related Mannheimia sp. in camels. Conclusions The findings of this study provide evidence for the presence of acapsular P. multocida or of hitherto unknown capsular types of P. multocida in camels, closely related to P. multocida strains causing HS in bovines. Further isolations and molecular studies of camelid P. multocida from healthy carriers and from HS-like disease in camels are necessary to provide conclusive answers. This paper is the first report on the isolation of M. granulomatis or a closely related new Mannheimia species from camelids

    Occurrence of Antimicrobial Resistance in Canine and Feline Bacterial Pathogens in Germany under the Impact of the TĂ„HAV Amendment in 2018

    Get PDF
    The occurrence of antimicrobial resistance due to the use of antimicrobials is considered to be a main cause for treatment failure of bacterial infections in humans and animals. The right of German veterinarians to use and prescribe medications such as antimicrobials is regulated by the Regulation of Veterinary Pharmacies (TÄHAV). The aim of this study was to investigate the impact of the second amendment to the TÄHAV in 2018 on the occurrence of antimicrobial resistance in selected bacterial pathogens isolated from dogs and cats in Germany. For this purpose, we analyzed antimicrobial susceptibility data from 38 German small animal practices gathered between 2015 and 2021 in cooperation with Laboklin (Labor für klinische Diagnostik GmbH & Co.KG, Bad Kissingen, Germany). Annual cumulative susceptibility data of eight bacterial species were analyzed and compared. The mean value of resistant isolates was determined for each year and supplemented by 95% confidence intervals. Encouraged by the amendment, an increase in sample submissions was observed in Germany. The highest resistance rates to the analyzed substances penicillin G, ampicillin, amoxicillin-clavulanic acid, cefovecin, and enrofloxacin were found for Staphylococcus pseudintermedius (S. pseudintermedius), S. aureus, and Escherichia coli (E. coli). In contrast, resistance rates were low for Pasteurella multocida (P. multocida) and β-hemolytic streptococci. Significant resistance trends (p < 0.05) assumed as influenced by the TÄHAV amendment could be the significant decreases in resistance rates of S. pseudintermedius against penicillin G to 67% (n = 322/479), and ampicillin to 63% (n = 286/453), as well as S. felis against amoxicillin-clavulanic acid and cefovecin to 2% (n = 2/109), furthermore, the reduction in the occurrence of resistance of S. aureus against enrofloxacin to 4% (n = 3/76) in 2021. Moreover, for all species, the efficacy against the analyzed substances was maintained over the study period

    Effects of a Four-Week High-Dosage Zinc Oxide Supplemented Diet on Commensal Escherichia coli of Weaned Pigs

    Get PDF
    Strategies to reduce economic losses associated with post-weaning diarrhea in pig farming include high-level dietary zinc oxide supplementation. However, excessive usage of zinc oxide in the pig production sector was found to be associated with accumulation of multidrug resistant bacteria in these animals, presenting an environmental burden through contaminated manure. Here we report on zinc tolerance among a random selection of intestinal Escherichia coli comprising of different antibiotic resistance phenotypes and sampling sites isolated during a controlled feeding trial from 16 weaned piglets: In total, 179 isolates from “pigs fed with high zinc concentrations” (high zinc group, [HZG]: n = 99) and a corresponding “control group” ([CG]: n = 80) were investigated with regard to zinc tolerance, antimicrobial- and biocide susceptibilities by determining minimum inhibitory concentrations (MICs). In addition, in silico whole genome screening (WGSc) for antibiotic resistance genes (ARGs) as well as biocide- and heavy metal tolerance genes was performed using an in-house BLAST-based pipeline. Overall, porcine E. coli isolates showed three different ZnCl2 MICs: 128 μg/ml (HZG, 2%; CG, 6%), 256 μg/ml (HZG, 64%; CG, 91%) and 512 μg/ml ZnCl2 (HZG, 34%, CG, 3%), a unimodal distribution most likely reflecting natural differences in zinc tolerance associated with different genetic lineages. However, a selective impact of the zinc-rich supplemented diet seems to be reasonable, since the linear mixed regression model revealed a statistically significant association between “higher” ZnCl2 MICs and isolates representing the HZG as well as “lower ZnCl2 MICs” with isolates of the CG (p = 0.005). None of the zinc chloride MICs was associated with a particular antibiotic-, heavy metal- or biocide- tolerance/resistance phenotype. Isolates expressing the 512 μg/ml MIC were either positive for ARGs conferring resistance to aminoglycosides, tetracycline and sulfamethoxazole-trimethoprim, or harbored no ARGs at all. Moreover, WGSc revealed a ubiquitous presence of zinc homeostasis and – detoxification genes, including zitB, zntA, and pit. In conclusion, we provide evidence that zinc-rich supplementation of pig feed selects for more zinc tolerant E. coli, including isolates harboring ARGs and biocide- and heavy metal tolerance genes – a putative selective advantage considering substances and antibiotics currently used in industrial pork production systems

    Pasteurella multocida Involved in Respiratory Disease of Wild Chimpanzees

    Get PDF
    Pasteurella multocida can cause a variety of diseases in various species of mammals and birds throughout the world but nothing is known about its importance for wild great apes. In this study we isolated P. multocida from wild living, habituated chimpanzees from TaĂŻ National Park, CĂ´te d'Ivoire. Isolates originated from two chimpanzees that died during a respiratory disease outbreak in 2004 as well as from one individual that developed chronic air-sacculitis following this outbreak. Four isolates were subjected to a full phenotypic and molecular characterisation. Two different clones were identified using pulsed field gel electrophoresis. Multi Locus Sequence Typing (MLST) enabled the identification of previous unknown alleles and two new sequence types, ST68 and ST69, were assigned. Phylogenetic analysis of the superoxide dismutase (sodA) gene and concatenated sequences from seven MLST-housekeeping genes showed close clustering within known P. multocida isolated from various hosts and geographic locations. Due to the clinical relevance of the strains described here, these results make an important contribution to our knowledge of pathogens involved in lethal disease outbreaks among endangered great apes

    No evidence of the Shiga toxin-producing E. coli O104:H4 outbreak strain or enteroaggregative E. coli (EAEC) found in cattle faeces in northern Germany, the hotspot of the 2011 HUS outbreak area

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ruminants, in particular bovines, are the primary reservoir of Shiga toxin-producing <it>E. coli </it>(STEC), but whole genome analyses of the current German ESBL-producing O104:H4 outbreak strain of sequence type (ST) 678 showed this strain to be highly similar to enteroaggregative <it>E. coli </it>(EAEC). Strains of the EAEC pathotype are basically adapted to the human host. To clarify whether in contrast to this paradigm, the O104:H4 outbreak strain and/or EAEC may also be able to colonize ruminants, we screened a total of 2.000 colonies from faecal samples of 100 cattle from 34 different farms - all located in the HUS outbreak region of Northern Germany - for genes associated with the O104:H4 HUS outbreak strain (<it>stx2</it>, <it>terD</it>, <it>rfb</it><sub>O104</sub>, <it>fliC</it><sub>H4</sub>), STEC (<it>stx1</it>, <it>stx2</it>, <it>escV</it>), EAEC (<it>pAA</it>, <it>aggR, astA</it>), and ESBL-production (<it>bla</it><sub>CTX-M</sub>, <it>bla</it><sub>TEM</sub>, <it>bla</it><sub>SHV</sub>).</p> <p>Results</p> <p>The faecal samples contained neither the HUS outbreak strain nor any EAEC. As the current outbreak strain belongs to ST678 and displays an en-teroaggregative and ESBL-producing phenotype, we additionally screened selected strains for ST678 as well as the aggregative adhesion pattern in HEp-2 cells. However, we were unable to find any strains belonging to ST678 or showing an aggregative adhesion pattern. A high percentage of animals (28%) shed STEC, corroborating previous knowl-edge and thereby proving the validity of our study. One of the STEC also harboured the LEE pathogenicity island. In addition, eleven animals shed ESBL-producing <it>E. coli</it>.</p> <p>Conclusions</p> <p>While we are aware of the limitations of our survey, our data support the theory, that, in contrast to other Shiga-toxin producing <it>E. coli</it>, cattle are not the reservoir for the O104:H4 outbreak strain or other EAEC, but that the outbreak strain seems to be adapted to humans or might have yet another reservoir, raising new questions about the epidemiology of STEC O104:H4.</p

    Comparable High Rates of Extended-Spectrum-Beta-Lactamase-Producing Escherichia coli in Birds of Prey from Germany and Mongolia

    Get PDF
    Frequent contact with human waste and liquid manure from intensive livestock breeding, and the increased loads of antibiotic-resistant bacteria that result, are believed to be responsible for the high carriage rates of ESBL- producing E. coli found in birds of prey (raptors) in Central Europe. To test this hypothesis against the influence of avian migration, we initiated a comparative analysis of faecal samples from wild birds found in Saxony-Anhalt in Germany and the Gobi-Desert in Mongolia, regions of dissimilar human and livestock population characteristics and agricultural practices. We sampled a total of 281 wild birds, mostly raptors with primarily north-to-south migration routes. We determined antimicrobial resistance, focusing on ESBL production, and unravelled the phylogenetic and clonal relatedness of identified ESBL-producing E. coli isolates using multi-locus sequence typing (MLST) and macrorestriction analyses. Surprisingly, the overall carriage rates (approximately 5%) and the proportion of ESBL-producers among E. coli (Germany: 13.8%, Mongolia: 10.8%) were similar in both regions. Whereas blaCTX-M-1 predominated among German isolates (100%), blaCTX-M-9 was the most prevalent in Mongolian isolates (75%). We identified sequence types (STs) that are well known in human and veterinary clinical ESBL-producing E. coli (ST12, ST117, ST167, ST648) and observed clonal relatedness between a Mongolian avian ESBL-E. coli (ST167) and a clinical isolate of the same ST that originated in a hospitalised patient in Europe. Our data suggest the influence of avian migratory species in the transmission of ESBL-producing E. coli and challenge the prevailing assumption that reducing human influence alone invariably leads to lower rates of antimicrobial resistance

    High-Zinc Supplementation of Weaned Piglets Affects Frequencies of Virulence and Bacteriocin Associated Genes Among Intestinal Escherichia coli Populations

    Get PDF
    To prevent economic losses due to post-weaning diarrhea (PWD) in industrial pig production, zinc (Zn) feed additives have been widely used, especially since awareness has risen that the regular application of antibiotics promotes buildup of antimicrobial resistance in both commensal and pathogenic bacteria. In a previous study on 179 Escherichia coli collected from piglets sacrificed at the end of a Zn feeding trial, including isolates obtained from animals of a high-zinc fed group (HZG) and a corresponding control group (CG), we found that the isolate collection exhibited three different levels of tolerance toward zinc, i.e., the minimal inhibitory concentration (MIC) detected was 128, followed by 256 and 512 mu g/ml ZnCl2. We further provided evidence that enhanced zinc tolerance in porcine intestinal E. coli populations is clearly linked to excessive zinc feeding. Here we provide insights about the genomic make-up and phylogenetic background of these 179 E. coli genomes. Bayesian analysis of the population structure (BAPS) revealed a lack of association between the actual zinc tolerance level and a particular phylogenetic E. coli cluster or even branch for both, isolates belonging to the HZG and CG. In addition, detection rates for genes and operons associated with virulence (VAG) and bacteriocins (BAG) were lower in isolates originating from the HZG (41 vs. 65% and 22 vs. 35%, p < 0.001 and p = 0.002, resp.). Strikingly, E. coli harboring genes defining distinct pathotypes associated with intestinal disease, i.e., enterotoxigenic, enteropathogenic, and Shiga toxin-producing E. coli (ETEC, EPEC, and STEC) constituted 1% of the isolates belonging to the HZG but 14% of those from the CG. Notably, these pathotypes were positively associated with enhanced zinc tolerance (512 mu g/ml ZnCl2 MIC, p < 0.001). Taken together, zinc excess seems to influence carriage rates of VAGs and BAGs in porcine intestinal E. coli populations, and high-zinc feeding is negatively correlated with enteral pathotype occurrences, which might explain earlier observations concerning the relative increase of Enterobacterales considering the overall intestinal microbiota of piglets during zinc feeding trials while PWD rates have decreased

    How to survive pig farming: Mechanism of SCCmec element deletion and metabolic stress adaptation in livestock-associated MRSA

    Get PDF
    Previous research on methicillin susceptible Staphylococcus aureus (MSSA) belonging to livestock-associated (LA-) sequence type (ST) 398, isolated from pigs and their local surroundings, indicated that differences between these MSSA and their methicillin resistant predecessors (MRSA) are often limited to the absence of the staphylococcal cassette chromosome mec (SCCmec) and few single nucleotide polymorphisms. So far, our understanding on how LA-MRSA endure the environmental conditions associated with pig-farming as well as the putative impact of this particular environment on the mobilisation of SCCmec elements is limited. Thus, we performed in-depth genomic and transcriptomic analyses using the LA-MRSA ST398 strain IMT38951 and its methicillin susceptible descendant. We identified a mosaic-structured SCCmec region including a putative replicative SCCmecVc which is absent from the MSSA chromosome through homologous recombination. Based on our data, such events occur between short repetitive sequences identified within and adjacent to two distinct alleles of the large cassette recombinase genes C (ccrC). We further evaluated the global transcriptomic response of MRSA ST398 to particular pig-farm associated conditions, i.e., contact with host proteins (porcine serum) and a high ammonia concentration. Differential expression of global regulators involved in stress response control were identified, i.e., ammonia-induced alternative sigma factor B-depending activation of genes for the alkaline shock protein 23, the heat shock response and the accessory gene regulator (agr)-controlled transcription of virulence factors. Exposure to serum transiently induced the transcription of distinct virulence factor encoding genes. Transcription of genes reported for mediating the loss of methicillin resistance, especially ccrC, was not significantly different compared to the unchallenged controls. We concluded that, from an evolutionary perspective, bacteria may save energy by incidentally dismissing a fully replicative SCCmec element in contrast to the induction of ccr genes on a population scale. Since the genomic SCCmec integration site is a hot-spot of recombination, occasional losses of elements of 16 kb size may restore capacities for the uptake of foreign genetic material. Subsequent spread of resistance, on the other hand, might depend on the autonomous replication machinery of the deleted SCCmec elements that probably enhance chances for reintegration of SCCmec into susceptible genomes by mere multiplication

    Antimicrobial and Biocide Resistance among Feline and Canine Staphylococcus aureus and Staphylococcus pseudintermedius Isolates from Diagnostic Submissions

    Get PDF
    A total of 114 Staphylococcus isolates from various infections of companion animals, including 43 feline Staphylococcus aureus, 19 canine S. aureus, 11 feline Staphylococcus pseudintermedius and 41 canine S. pseudintermedius were investigated for (i) their susceptibility to 24 antimicrobial agents and three combinations of antimicrobial agents by broth microdilution following CLSI recommendations and (ii) the corresponding resistance genes. In addition, the isolates were tested for their susceptibility to the four biocides benzalkonium chloride, chlorhexidine, polyhexanide and octenidine by a recently developed biocide susceptibility testing protocol. Penicillin resistance via blaZ was the dominant resistance property in all four groups of isolates ranging between 76.7 and 90.9%. About one quarter of the isolates (25.4%) proved to be methicillin-resistant and carried the genes mecA or mecC. Macrolide resistance was the second most prevalent resistance property (27.2%) and all isolates harbored the resistance genes erm(A), erm(B), erm(C), erm(T) or msr(A), alone or in combinations. Fluoroquinolone resistance was detected in 21.1% of all isolates tested, whereas tetracycline resistance via tet(K) and/or tet(M) occurred in 19.3% of the isolates. Resistance to last resort antimicrobial agents in human medicine was seen only in single isolates, if at all. The minimal inhibitory concentrations (MICs) of the four biocides showed unimodal distributions and were very similar for the four groups of staphylococci. Because of the large number of (multi)resistant isolates, antimicrobial susceptibility testing of feline and canine S. aureus and S. pseudintermedius isolates is highly recommended before the start of an antimicrobial chemotherapy. Moreover, no hints towards the development of biocide resistance were detected

    A Real-Time Thermal Sensor System for Quantifying the Inhibitory Effect of Antimicrobial Peptides on Bacterial Adhesion and Biofilm Formation

    Get PDF
    The increasing rate of antimicrobial resistance (AMR) in pathogenic bacteria is a global threat to human and veterinary medicine. Beyond antibiotics, antimicrobial peptides (AMPs) might be an alternative to inhibit the growth of bacteria, including AMR pathogens, on different surfaces. Biofilm formation, which starts out as bacterial adhesion, poses additional challenges for antibiotics targeting bacterial cells. The objective of this study was to establish a real-time method for the monitoring of the inhibition of (a) bacterial adhesion to a defined substrate and (b) biofilm formation by AMPs using an innovative thermal sensor. We provide evidence that the thermal sensor enables continuous monitoring of the effect of two potent AMPs, protamine and OH-CATH-30, on surface colonization of bovine mastitis-associated Escherichia (E.) coli and Staphylococcus (S.) aureus. The bacteria were grown under static conditions on the surface of the sensor membrane, on which temperature oscillations generated by a heater structure were detected by an amorphous germanium thermistor. Bacterial adhesion, which was confirmed by white light interferometry, caused a detectable amplitude change and phase shift. To our knowledge, the thermal measurement system has never been used to assess the effect of AMPs on bacterial adhesion in real time before. The system could be used to screen and evaluate bacterial adhesion inhibition of both known and novel AMPs
    corecore