9 research outputs found

    Experiences and opinions of multi-professional non-medical oncology prescribers on post-qualification training: a qualitative study

    Get PDF
    Background: Within the UK, a non-medical prescriber is a non-medical healthcare professional who has undertaken post-registration training to gain prescribing rights. Lack of post-qualification NMP training has previously been identified as a barrier to the development of oncology non-medical prescribing practice. Aim: To explore the experiences and opinions of multi-professional non-medical oncology prescribers on post-qualification training. Method: Nine out of 30 oncology non-medical prescribers (three nurses, three pharmacists and three radiographers) from a single cancer centre in Wales, were selected from a study site NMP database using randomisation sampling within Microsoft® Excel. Participants were interviewed using a validated and piloted semi-structured interview design on the topic of post-qualification training for non-medical prescribers. Participants were invited via organisational email. Interviews were audio-recorded and transcribed verbatim. Anonymised data were thematically analysed aided by NVivo® software. Results: Main themes identified: experience related to training, competency, support and training methods. Competency assessment methods discussed were the annual non-medical prescriber appraisal, peer review and a line manager’s overarching appraisal. Support requirements identified included greater consultant input to help non-medical prescribers identify training and peer support opportunities. Organisational support was requested regarding regular study leave and governance around clinical judgement and errors. The need for regular structured in-house training related to non-medical prescriber’s level of experience was identified. Conclusion: Development of organisation-led governance strategies and in-house training programmes will support training equity for all non-medical prescribers within the organisation

    Study protocol: a multi-centre randomised study of induction chemotherapy followed by capecitabine +/- nelfinavir with high- or standard-dose radiotherapy for locally advanced pancreatic cancer (SCALOP-2)

    Get PDF
    Background Induction chemotherapy followed by chemoradiation is a treatment option for patients with locally advanced pancreatic cancer (LAPC). However, overall survival is comparable to chemotherapy alone and local progression occurs in nearly half of all patients, suggesting chemoradiation strategies should be optimised. SCALOP-2 is a randomised phase II trial testing the role of radiotherapy dose escalation and/or the addition of the radiosensitiser nelfinavir, following induction chemotherapy of gemcitabine and nab-paclitaxel (GEMABX). A safety run-in phase (stage 1) established the nelfinavir dose to administer with chemoradiation in the randomised phase (stage 2). Methods Patients with locally advanced, inoperable, non-metastatic pancreatic adenocarcinoma receive three cycles of induction GEMABX chemotherapy prior to radiological assessment. Those with stable/responding disease are eligible for further trial treatment. In Stage 1, participants received one further cycle of GEMABX followed by capecitabine-chemoradiation with escalating doses of nelfinavir in a rolling-six design. Stage 2 aims to register 262 and randomise 170 patients with responding/stable disease to one of five arms: capecitabine with high- (arms C + D) or standard-dose (arms A + B) radiotherapy with (arms A + C) or without (arms B + D) nelfinavir, or three more cycles of GEMABX (arm E). Participants allocated to the chemoradiation arms receive another cycle of GEMABX before chemoradiation begins. Co-primary outcomes are 12-month overall survival (radiotherapy dose-escalation question) and progression-free survival (nelfinavir question). Secondary outcomes include toxicity, quality of life, disease response rate, resection rate, treatment compliance, and CA19–9 response. SCALOP-2 incorporates a detailed radiotherapy quality assurance programme. Discussion SCALOP-2 aims to optimise chemoradiation in LAPC and incorporates a modern induction regimen

    NEOSCOPE: A randomised Phase II study of induction chemotherapy followed by either oxaliplatin/capecitabine or paclitaxel/carboplatin based chemoradiation as pre-operative regimen for resectable oesophageal adenocarcinoma

    Get PDF
    Background: Both oxaliplatin/capecitabine-based chemoradiation (OXCAP-RT) and carboplatin-paclitaxel based radiation (CarPac-RT) are active regimens in oesophageal adenocarcinoma, but no randomised study has compared their efficacy and toxicity. This randomised phase II "pick a winner" trial will identify the optimum regimen to take forward to a future phase III trial against neo-adjuvant chemotherapy, the current standard in the UK. Methods/Design: Patients with resectable adenocarcinoma of the oesophagus or Siewert Type 1-2 gastro-oesophageal junction (GOJ), ≥T3 and/or ≥ N1 are eligible for the study. Following two cycles of induction OXCAP chemotherapy (oxaliplatin 130 mg/m2 D1, Cape 625 mg/m2 D1-21, q 3 wk), patients are randomised 1:1 to OXCAP-RT (oxaliplatin 85 mg/m2 Day 1,15,29; capecitabine 625 mg/m2 twice daily on days of RT; RT-45 Gy/25 fractions/5 weeks) or CarPac-RT (Carboplatin AUC2 and paclitaxel 50 mg/m2 Day 1,8,15,22,29; RT-45 Gy/25 fractions/5 weeks). Restaging CT/PET-CT is performed 4-6 weeks after CRT, and a two-phase oesophagectomy with two-field lymphadenectomy is performed six to eight weeks after CRT. The primary end-point is pathological complete response rate (pCR) at resection and will include central review. Secondary endpoints include: recruitment rate, toxicity, 30-day surgical morbidity/mortality, resection margin positivity rate and overall survival (median, 3- and 5-yr OS. 76 patients (38/arm) gives 90% power and one-sided type 1 error of 10% if patients on one novel treatment have a response rate of 35% while the second treatment has a response rate of 15%. A detailed RT Quality Assurance (RTQA) programme includes a detailed RT protocol and guidance document, pre-accrual RT workshop, outlining exercise, and central evaluation of contouring and planning. This trial has been funded by Cancer Research UK (C44694/A14614), sponsored by Velindre NHS Trust and conducted through the Wales Cancer Trials Unit at Cardiff University on behalf of the NCRI Upper GI CSG. Discussion: Following encouraging results from previous trials, there is an interest in neo-adjuvant chemotherapy and CRT containing regimens for treatment of oesophageal adenocarcinoma. NEOSCOPE will first establish the efficacy, safety and feasibility of two different neo-adjuvant CRT regimens prior to a potential phase III trial

    NeoSCOPE: A phase II randomized comparison of neoadjuvant oxaliplatin/capecitabine versus carboplatin/paclitaxel-based chemoradiation in operable esophageal cancer [Abstract]

    No full text
    Background: Both oxaliplatin/capecitabine-based chemoradiation (OXCAP-RT) and carboplatin-paclitaxel based radiation (CarPac-RT) are active regimens in oesophageal cancer, but no randomized study has compared their efficacy/toxicity. This study compares the two regimens to identify the optimum regimen to take forward to a phase III trial against neo-adjuvant chemotherapy, the current standard in the UK. Methods: Eligibility: Resectable adenocarcinoma of oesophagus and Type 1-2 Gastro-Osophageal Junction; ≥T3 and/or ≥N1 staged with EUS and PET-CT; PS 0-1. Intervention: Both arms receive 2 cycles induction OXCAP (oxaliplatin 130mg/m2 D1, Cape 625mg/m2 D1-21, q 3wk) followed by randomization to OXCAP-RT (oxali 85mg/m2 Day 1,15,29; cape 625mg/m2 on days of RT; RT-45Gy/25 fractions/5weeks) or CarPac-RT (Carbo AUC2 and paclitaxel 50mg/m2 Day 1,8,15,22,29; RT-45Gy/25 fractions/5weeks). Restaging CT/PET-CT 4-6 weeks after CRT, and 2-phase oesophagectomy with 2-field lymphadenectomy 6-8 weeks after CRT. Primary End-Point: Pathological complete response. Secondary: 1) Feasibility of recruitment; Toxicity; 30-day surgical morbidity/mortality; resection margin positivity rate; median, 3- and 5-yr OS. Statistics: Randomised phase II with 1:1 randomisation; planned accrual 76 patients (38/arm) over 18 months. In each arm, this sample size gives 90% power and one-sided type 1 error of 10% to detect that pCR is not 35%. Interim safety analysis: Toxicity analysis after 10 patients have completed treatment. RT Quality Assurance: Pre-trial: Detailed RT protocol and guidance document, RT workshop, central evaluation of test-case contours and adequacy of RT plan. On-trial: Real-time central review of contours and plans of first 20 patients on trial, 1st case from each centre, and 10% of cases selected at random

    NEOSCOPE: a randomised Phase II study of induction chemotherapy followed by either oxaliplatin/capecitabine or paclitaxel/carboplatin based chemoradiation as pre-operative regimen for resectable oesophageal adenocarcinoma

    No full text
    Background: both oxaliplatin/capecitabine-based chemoradiation (OXCAP-RT) and carboplatin-paclitaxel based radiation (CarPac-RT) are active regimens in oesophageal adenocarcinoma, but no randomised study has compared their efficacy and toxicity. This randomised phase II “pick a winner” trial will identify the optimum regimen to take forward to a future phase III trial against neo-adjuvant chemotherapy, the current standard in the UK.Methods/design: patients with resectable adenocarcinoma of the oesophagus or Siewert Type 1–2 gastro-oesophageal junction (GOJ), ≥T3 and/or ≥ N1 are eligible for the study. Following two cycles of induction OXCAP chemotherapy (oxaliplatin 130 mg/m2 D1, Cape 625 mg/m2 D1-21, q 3 wk), patients are randomised 1:1 to OXCAP-RT (oxaliplatin 85 mg/m2 Day 1,15,29; capecitabine 625 mg/m2 twice daily on days of RT; RT-45 Gy/25 fractions/5 weeks) or CarPac-RT (Carboplatin AUC2 and paclitaxel 50 mg/m2 Day 1,8,15,22,29; RT-45 Gy/25 fractions/5 weeks). Restaging CT/PET-CT is performed 4–6 weeks after CRT, and a two-phase oesophagectomy with two-field lymphadenectomy is performed six to eight weeks after CRT. The primary end-point is pathological complete response rate (pCR) at resection and will include central review. Secondary endpoints include: recruitment rate, toxicity, 30-day surgical morbidity/mortality, resection margin positivity rate and overall survival (median, 3- and 5-yr OS. 76 patients (38/arm) gives 90% power and one-sided type 1 error of 10% if patients on one novel treatment have a response rate of 35% while the second treatment has a response rate of 15%. A detailed RT Quality Assurance (RTQA) programme includes a detailed RT protocol and guidance document, pre-accrual RT workshop, outlining exercise, and central evaluation of contouring and planning. This trial has been funded by Cancer Research UK (C44694/A14614), sponsored by Velindre NHS Trust and conducted through the Wales Cancer Trials Unit at Cardiff University on behalf of the NCRI Upper GI CSG.Discussion: following encouraging results from previous trials, there is an interest in neo-adjuvant chemotherapy and CRT containing regimens for treatment of oesophageal adenocarcinoma. NEOSCOPE will first establish the efficacy, safety and feasibility of two different neo-adjuvant CRT regimens prior to a potential phase III trial.Trial registration: Eudract No: 2012-000640-10. ClinicalTrials.gov: NCT01843829

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    No full text
    Altres ajuts: Department of Health and Social Care (DHSC); Illumina; LifeArc; Medical Research Council (MRC); UKRI; Sepsis Research (the Fiona Elizabeth Agnew Trust); the Intensive Care Society, Wellcome Trust Senior Research Fellowship (223164/Z/21/Z); BBSRC Institute Program Support Grant to the Roslin Institute (BBS/E/D/20002172, BBS/E/D/10002070, BBS/E/D/30002275); UKRI grants (MC_PC_20004, MC_PC_19025, MC_PC_1905, MRNO2995X/1); UK Research and Innovation (MC_PC_20029); the Wellcome PhD training fellowship for clinicians (204979/Z/16/Z); the Edinburgh Clinical Academic Track (ECAT) programme; the National Institute for Health Research, the Wellcome Trust; the MRC; Cancer Research UK; the DHSC; NHS England; the Smilow family; the National Center for Advancing Translational Sciences of the National Institutes of Health (CTSA award number UL1TR001878); the Perelman School of Medicine at the University of Pennsylvania; National Institute on Aging (NIA U01AG009740); the National Institute on Aging (RC2 AG036495, RC4 AG039029); the Common Fund of the Office of the Director of the National Institutes of Health; NCI; NHGRI; NHLBI; NIDA; NIMH; NINDS.Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care or hospitalization after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes-including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)-in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    corecore