65 research outputs found

    Urate oxidase knockdown decreases oxidative stress in a murine hepatic cell line

    Get PDF
    Humans, birds, and some primates do not express the uric acid degrading enzyme urate oxidase (UOX) and, as a result, have plasma uric acid concentrations higher than UOX expressing animals. Although high uric acid concentrations are suggested to increase the antioxidant defense system and provide a health advantage to animals without UOX, knockout mice lacking UOX develop pathological complications including gout and kidney failure. As an alternative to the knockout model, RNA interference was used to decrease UOX expression using stable transfection in a mouse hepatic cell line (ATCC, FL83B). Urate oxidase mRNA was reduced 66% (p < 0.05) compared to wild type, as measured by real time RT-PCR. To determine if UOX knockdown resulted in enhanced protection against oxidative stress, cells were challenged with hexavalent chromium (Cr(VI)) or 3-morpholinosydnonimine hydrochloride (SIN-1). Compared to wild type, cells with UOX knockdown exhibited a 37.2 ± 3.5% reduction (p < 0.05) in the electron spin resonance (ESR) signal after being exposed to Cr(VI) and displayed less DNA fragmentation (p < 0.05) following SIN-1 treatment. Cell viability decreased in wild type cells (p < 0.05), but not cells with UOX knockdown, after treatment with SIN-1. These results are consistent with an increased intracellular uric acid concentration and an increased defense against oxidative stress

    X chromosomes Aneuploidy Lymphocytes Centromeres Chromosomal translocations Sex chromosomes Etiology Fluorescent in situ hybridiz

    Get PDF
    Humans, birds, and some primates do not express the uric acid degrading enzyme urate oxidase (UOX) and, as a result, have plasma uric acid concentrations higher than UOX expressing animals. Although high uric acid concentrations are suggested to increase the antioxidant defense system and provide a health advantage to animals without UOX, knockout mice lacking UOX develop pathological complications including gout and kidney failure. As an alternative to the knockout model, RNA interference was used to decrease UOX expression using stable transfection in a mouse hepatic cell line (ATCC, FL83B). Urate oxidase mRNA was reduced 66% (p \u3c 0.05) compared to wild type, as measured by real time RT-PCR. To determine if UOX knockdown resulted in enhanced protection against oxidative stress, cells were challenged with hexavalent chromium (Cr(VI)) or 3-morpholinosydnonimine hydrochloride (SIN-1). Compared to wild type, cells with UOX knockdown exhibited a 37.2 ± 3.5% reduction (p \u3c 0.05) in the electron spin resonance (ESR) signal after being exposed to Cr(VI) and displayed less DNA fragmentation (p \u3c 0.05) following SIN-1 treatment. Cell viability decreased in wild type cells (p \u3c 0.05), but not cells with UOX knockdown, after treatment with SIN-1. These results are consistent with an increased intracellular uric acid concentration and an increased defense against oxidative stress

    Analysis of the fecal microbiota of fast- and slow-growing rainbow trout (Oncorhynchus mykiss)

    Get PDF
    Diverse microbial communities colonizing the intestine of fish contribute to their growth, digestion, nutrition, and immune function. We hypothesized that fecal samples representing the gut microbiota of rainbow trout could be associated with differential growth rates observed in fish breeding programs. If true, harnessing the functionality of this microbiota can improve the profitability of aquaculture. The first objective of this study was to test this hypothesis if gut microbiota is associated with fish growth rate (body weight). Four full-sibling families were stocked in the same tank and fed an identical diet. Two fast-growing and two slow-growing fish were selected from each family for 16S rRNA microbiota profiling.https://doi.org/10.1186/s12864-019-6175-

    Distinct microbial assemblages associated with genetic selection for high- and low- muscle yield in rainbow trout

    Get PDF
    Fish gut microbial assemblages play a crucial role in the growth rate, metabolism, and immunity of the host. We hypothesized that the gut microbiota of rainbow trout was correlated with breeding program based genetic selection for muscle yield. To test this hypothesis, fecal samples from 19 fish representing an F2 high-muscle genetic line (ARS-FY-H) and 20 fish representing an F1 low-muscle yield genetic line (ARS-FY-L) were chosen for microbiota profiling using the 16S rRNA gene. Significant differences in microbial assemblages between these two genetic lines might represent the effect of host genetic selection in structuring the gut microbiota of the host. Tukey’s transformed inverse Simpson indices indicated that high muscle yield genetic line (ARS-FY-H) samples have higher microbial diversity compared to those of the low muscle yield genetic line (ARS-FY-L) (LMM, χ2(1) =14.11, p < 0.05). The fecal samples showed statistically distinct structure in microbial assemblages between the genetic lines (F1,36 = 4.7, p < 0.05, R2 = 11.9%). Functional profiling of bacterial operational taxonomic units predicted characteristic functional capabilities of the microbial communities in the high (ARS-FY-H) and low (ARS-FY-L) muscle yield genetic line samples. The significant differences of the microbial assemblages between high (ARS-FY-H) and low (ARS-FY-L) muscle yield genetic lines indicate a possible effect of genetic selection on the microbial diversity of the host. The functional composition of taxa demonstrates a correlation between bacteria and improving the muscle accretion in the host, probably, by producing various metabolites and enzymes that might aid in digestion. Further research is required to elucidate the mechanisms involved in shaping the microbial community through host genetic selection.https://doi.org/10.1186/s12864-020-07204-

    The social and behavioral influences (SBI) study: study design and rationale for studying the effects of race and activation on cancer pain management

    Get PDF
    Background Racial disparities exist in the care provided to advanced cancer patients. This article describes an investigation designed to advance the science of healthcare disparities by isolating the effects of patient race and patient activation on physician behavior using novel standardized patient (SP) methodology. Methods/design The Social and Behavioral Influences (SBI) Study is a National Cancer Institute sponsored trial conducted in Western New York State, Northern/Central Indiana, and lower Michigan. The trial uses an incomplete randomized block design, randomizing physicians to see patients who are either black or white and who are “typical” or “activated” (e.g., ask questions, express opinions, ask for clarification, etc.). The study will enroll 91 physicians. Discussion The SBI study addresses important gaps in our knowledge about racial disparities and methods to reduce them in patients with advanced cancer by using standardized patient methodology. This study is innovative in aims, design, and methodology and will point the way to interventions that can reduce racial disparities and discrimination and draw links between implicit attitudes and physician behaviors

    Cerebellar c9RAN proteins associate with clinical and neuropathological characteristics of C9ORF72 repeat expansion carriers.

    Get PDF
    Clinical and neuropathological characteristics associated with G4C2 repeat expansions in chromosome 9 open reading frame 72 (C9ORF72), the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia, are highly variable. To gain insight on the molecular basis for the heterogeneity among C9ORF72 mutation carriers, we evaluated associations between features of disease and levels of two abundantly expressed "c9RAN proteins" produced by repeat-associated non-ATG (RAN) translation of the expanded repeat. For these studies, we took a departure from traditional immunohistochemical approaches and instead employed immunoassays to quantitatively measure poly(GP) and poly(GA) levels in cerebellum, frontal cortex, motor cortex, and/or hippocampus from 55 C9ORF72 mutation carriers [12 patients with ALS, 24 with frontotemporal lobar degeneration (FTLD) and 19 with FTLD with motor neuron disease (FTLD-MND)]. We additionally investigated associations between levels of poly(GP) or poly(GA) and cognitive impairment in 15 C9ORF72 ALS patients for whom neuropsychological data were available. Among the neuroanatomical regions investigated, poly(GP) levels were highest in the cerebellum. In this same region, associations between poly(GP) and both neuropathological and clinical features were detected. Specifically, cerebellar poly(GP) levels were significantly lower in patients with ALS compared to patients with FTLD or FTLD-MND. Furthermore, cerebellar poly(GP) associated with cognitive score in our cohort of 15 patients. In the cerebellum, poly(GA) levels similarly trended lower in the ALS subgroup compared to FTLD or FTLD-MND subgroups, but no association between cerebellar poly(GA) and cognitive score was detected. Both cerebellar poly(GP) and poly(GA) associated with C9ORF72 variant 3 mRNA expression, but not variant 1 expression, repeat size, disease onset, or survival after onset. Overall, these data indicate that cerebellar abnormalities, as evidenced by poly(GP) accumulation, associate with neuropathological and clinical phenotypes, in particular cognitive impairment, of C9ORF72 mutation carriers

    Bloom’s Syndrome and PICH Helicases Cooperate with Topoisomerase IIα in Centromere Disjunction before Anaphase

    Get PDF
    Centromeres are specialized chromosome domains that control chromosome segregation during mitosis, but little is known about the mechanisms underlying the maintenance of their integrity. Centromeric ultrafine anaphase bridges are physiological DNA structures thought to contain unresolved DNA catenations between the centromeres separating during anaphase. BLM and PICH helicases colocalize at these ultrafine anaphase bridges and promote their resolution. As PICH is detectable at centromeres from prometaphase onwards, we hypothesized that BLM might also be located at centromeres and that the two proteins might cooperate to resolve DNA catenations before the onset of anaphase. Using immunofluorescence analyses, we demonstrated the recruitment of BLM to centromeres from G2 phase to mitosis. With a combination of fluorescence in situ hybridization, electron microscopy, RNA interference, chromosome spreads and chromatin immunoprecipitation, we showed that both BLM-deficient and PICH-deficient prometaphase cells displayed changes in centromere structure. These cells also had a higher frequency of centromeric non disjunction in the absence of cohesin, suggesting the persistence of catenations. Both proteins were required for the correct recruitment to the centromere of active topoisomerase IIα, an enzyme specialized in the catenation/decatenation process. These observations reveal the existence of a functional relationship between BLM, PICH and topoisomerase IIα in the centromere decatenation process. They indicate that the higher frequency of centromeric ultrafine anaphase bridges in BLM-deficient cells and in cells treated with topoisomerase IIα inhibitors is probably due not only to unresolved physiological ultrafine anaphase bridges, but also to newly formed ultrafine anaphase bridges. We suggest that BLM and PICH cooperate in rendering centromeric catenates accessible to topoisomerase IIα, thereby facilitating correct centromere disjunction and preventing the formation of supernumerary centromeric ultrafine anaphase bridges

    Genetic polymorphisms in DNA repair and oxidative stress pathways may modify the association between body size and postmenopausal breast cancer

    Get PDF
    Obesity is associated with increased bioavailability of estrogen, hyperinsulemia and chronic inflammation, all of which may promote tumor growth. Given DNA repair and oxidative stress pathways may work together with these mechanisms to influence carcinogenesis, we hypothesized that genetic variation in these pathways may modify the obesity-postmenopausal breast cancer association

    Generation of a reference transcriptome for evaluating rainbow trout responses to various stressors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fish under intensive culture conditions are exposed to a variety of acute and chronic stressors, including high rearing densities, sub-optimal water quality, and severe thermal fluctuations. Such stressors are inherent in aquaculture production and can induce physiological responses with adverse effects on traits important to producers and consumers, including those associated with growth, nutrition, reproduction, immune response, and fillet quality. Understanding and monitoring the biological mechanisms underlying stress responses will facilitate alleviating their negative effects through selective breeding and changes in management practices, resulting in improved animal welfare and production efficiency.</p> <p>Results</p> <p>Physiological responses to five treatments associated with stress were characterized by measuring plasma lysozyme activity, glucose, lactate, chloride, and cortisol concentrations, in addition to stress-associated transcripts by quantitative PCR. Results indicate that the fish had significant stressor-specific changes in their physiological conditions. Sequencing of a pooled normalized transcriptome library created from gill, brain, liver, spleen, kidney and muscle RNA of control and stressed fish produced 3,160,306 expressed sequence tags which were assembled and annotated. SNP discovery resulted in identification of ~58,000 putative single nucleotide polymorphisms including 24,479 which were predicted to fall within exons. Of these, 4907 were predicted to occupy the first position of a codon and 4110 the second, increasing the probability to impact amino acid sequence variation and potentially gene function.</p> <p>Conclusion</p> <p>We have generated and characterized a reference transcriptome for rainbow trout that represents multiple tissues responding to multiple stressors common to aquaculture production environments. This resource compliments existing public transcriptome data and will facilitate approaches aiming to evaluate gene expression associated with stress in this species.</p
    corecore