150 research outputs found

    Luminosity function, sizes and FR dichotomy of radio-loud AGN

    Full text link
    The radio luminosity function (RLF) of radio galaxies and radio-loud quasars is often modelled as a broken power-law. The break luminosity is close to the dividing line between the two Fanaroff-Riley (FR) morphological classes for the large-scale radio structure of these objects. We use an analytical model for the luminosity and size evolution of FRII-type objects together with a simple prescription for FRI-type sources to construct the RLF. We postulate that all sources start out with an FRII-type morphology. Weaker jets subsequently disrupt within the quasi-constant density cores of their host galaxies and develop turbulent lobes of type FRI. With this model we recover the slopes of the power laws and the break luminosity of the RLF determined from observations. The rate at which AGN with jets of jet power QQ appear in the universe is found to be proportional to Q−1.6Q^{-1.6}. The model also roughly predicts the distribution of the radio lobe sizes for FRII-type objects, if the radio luminosity of the turbulent jets drops significantly at the point of disruption. We show that our model is consistent with recent ideas of two distinct accretion modes in jet-producing AGN, if radiative efficiency of the accretion process is correlated with jet power.Comment: 13 pages, 1 figure, accepted by MNRA

    6C radio galaxies at z~1: The influence of radio power on the alignment effect

    Full text link
    Powerful radio galaxies often display enhanced optical/UV continuum emission and extended emission line regions, elongated and aligned with the radio jet axis. The expansion of the radio source strongly affects the gas clouds in the surrounding IGM, and the kinematic and ionization properties of the extended emission line regions display considerable variation over the lifetime of individual sources, as well as with cosmic epoch. We present the results of deep rest-frame UV and optical imaging and UV spectroscopy of high redshift 6C radio galaxies. The interdependence of the host galaxy and radio source properties are discussed, considering: (i) the relative contribution of shocks associated with the expanding radio source to the observed emission line gas kinematics, and their effect on the ionization state of the gas; (ii) the similarities and differences between the morphologies of the host galaxies and aligned emission for a range of radio source powers; and (iii) the influence of radio power on the strength of the observed alignment effect.Comment: LaTeX, 6 pages, 5 figures, Elsevier Science format. To appear in "Radio galaxies: past, present & future". eds. M. Jarvis et al., Leiden, Nov 200

    A Global Inventory of Feedback

    Get PDF
    Feedback from both supermassive black holes and massive stars plays a fundamental role in the evolution of galaxies and the inter-galactic medium. In this paper, we use available data to estimate the total amount of kinetic energy and momentum created per co-moving volume element over the history of the universe from three sources: massive stars and supernovae, radiation pressure and winds driven by supermassive black holes, and radio jets driven by supermassive black holes. Kinetic energy and momentum injection from jets peaks at z ≈ 1, while the other two sources peak at z ≈ 2. Massive stars are the dominant global source of momentum injection. For supermassive black holes, we find that the amount of kinetic energy from jets is about an order-of-magnitude larger than that from winds. We also find that the amount of kinetic energy created by massive stars is about 2.5 εstar times that carried by jets (where εstar is the fraction of injected energy not lost to radiative cooling). We discuss the implications of these results for the evolution of galaxies and IGM. Because the ratio of the black hole mass to galaxy mass is a steeply increasing function of mass, we show that the relative importance of black hole feedback to stellar feedback likewise increases with mass. We show that there is a trend in the present-day universe which, in the simplest picture, is consistent with galaxies that have been dominated by black hole feedback being generally quenched, while galaxies that have been dominated by stellar feedback are star-forming. We also note that the amount of kinetic energy carried by jets and winds appears to be sufficient to explain the properties of hot gas in massive halos (>1013 Mʘ)

    Clustering around radio galaxies at z~1.5

    Get PDF
    The importance of studying old elliptical galaxies at redshift z ~ 1.5 is reviewed, considering both what can be learned by extending studies of the evolution of cluster galaxy scaling relations to earlier cosmic epochs, and the age-dating of old elliptical galaxies at high redshifts. Following this, the first results are provided of an on-going project to find such distant elliptical galaxies, through an investigation of the cluster environments of powerful radio sources with redshifts 1.44 < z < 1.7. These studies show a considerable excess of red galaxies in the radio sources fields, with the magnitudes (K >~ 17.5) and colours (R-K > 4) expected of old passively evolving galaxies at the radio source redshift. The red galaxy overdensities are found on two different scales around the radio sources; a pronounced small-scale peak at radial distances of <~ 150 kpc, and a weaker large-scale excess extending out to 1 - 1.5 Mpc. The presence and richness of these red galaxy excesses varies considerably from source to source. An interpretation of these results is provided.Comment: LaTeX, 6 pages, Elsevier Science format. To appear in "Radio galaxies: past, present & future". eds. M. Jarvis et al., Leiden, Nov 200

    Erratum: Luminosity function, sizes and FR dichotomy of radio-loud AGN

    Full text link
    This erratum corrects a number of formulae containing mistakes in the paper 'Luminosity function, sizes and FR dichotomy of radio-loud AGN', 2007, MNRAS, v. 381, p.1548. The corrections do not alter any of the conclusions in the original paper.Comment: single page, no figures, erratum to MNRAS, 2007, v. 381, p. 154

    The black holes of radio galaxies during the "Quasar Era": Masses, accretion rates, and evolutionary stage

    Full text link
    We present an analysis of the AGN broad-line regions of 6 powerful radio galaxies at z>~2 (HzRGs) with rest-frame optical imaging spectroscopy obtained at the VLT. All galaxies have luminous (L(H-alpha)=few x 10^44 erg s^-1), spatially unresolved H-alpha line emission with FWHM>= 10,000 km s^-1 at the position of the nucleus, suggesting their AGN are powered by supermassive black holes with masses of few x 10^9 M_sun and accretion luminosities of a few percent of the Eddington luminosity. In two galaxies we also detect the BLRs in H-beta, suggesting relatively low extinction of A_V~1 mag, which agrees with constraints from X-ray observations. By relating black hole and bulge mass, we find a possible offset towards higher black-hole masses of at most ~0.6 dex relative to nearby galaxies at a given host mass, although each individual galaxy is within the scatter of the local relationship. If not entirely from systematic effects, this would then suggest that the masses of the host galaxies have increased by at most a factor ~4 since z~2 relative to the black-hole masses, perhaps through accretion of satellite galaxies or because of a time lag between star formation in the host galaxy and AGN fueling. We also compare the radiative and mechanical energy output (from jets) of our targets with predictions of recent models of "synthesis" or "grand unified" AGN feedback, which postulate that AGN with similar radiative and mechanical energy output rates to those found in our HzRGs may be nearing the end of their period of active growth. We discuss evidence that they may reach this stage at the same time as their host galaxies.Comment: A&A in pres

    On the evolution and environmental dependence of the star formation rate versus stellar mass relation since z ˜ 2.

    Get PDF
    This paper discusses the evolution of the correlation between galaxy star formation rates (SFRs) and stellar mass (M*) over the last ∼10 Gyr, particularly focusing on its environmental dependence. We first present the mid-infrared (MIR) properties of the Hα-selected galaxies in a rich cluster Cl 0939+4713 at z = 0.4. We use wide-field Spitzer/MIPS 24 μm data to show that the optically red Hα emitters, which are most prevalent in group-scale environments, tend to have higher SFRs and higher dust extinction than the majority population of blue Hα sources. With an MIR stacking analysis, we find that the median SFR of Hα emitters is higher in higher density environment at z = 0.4. We also find that star-forming galaxies in high-density environment tend to have higher specific SFR (SSFR), although the trend is much less significant compared to that of SFR. This increase of SSFR in high-density environment is not visible when we consider the SFR derived from Hα alone, suggesting that the dust attenuation in galaxies depends on environment; galaxies in high-density environment tend to be dustier (by up to ∼0.5 mag), probably reflecting a higher fraction of nucleated, dusty starbursts in higher density environments at z = 0.4. We then discuss the environmental dependence of the SFR–M* relation for star-forming galaxies since z ∼ 2, by compiling our comparable, narrow-band-selected, large Hα emitter samples in both distant cluster environments and field environments. We find that the SSFR of Hα-selected galaxies (at the fixed mass of log (M*/M⊙) = 10) rapidly evolves as (1 + z)3, but the SFR–M* relation is independent of the environment since z ∼ 2, as far as we rely on the Hα-based SFRs (with M*-dependent extinction correction). Even if we consider the possible environmental variation in the dust attenuation, we conclude that the difference in the SFR–M* relation between cluster and field star-forming galaxies is always small (≲0.2 dex level) at any time in the history of the Universe since z ∼ 2

    Radio Jets in Galaxies with Actively Accreting Black Holes: new insights from the SDSS

    Full text link
    The majority of nearby radio-loud AGN are found in massive, old elliptical galaxies with weak emission lines. At high redshifts,however, most known radio AGN have strong emission lines. In this paper, we examine a subset of radio AGN with emission lines selected from the Sloan Digital Sky Survey. The probability for a nearby radio AGN to have emission lines is a strongly decreasing function of galaxy mass and an increasing function of radio luminosity above 10^25 W/Hz. Emission line and radio luminosities are correlated, but with large dispersion. At a given radio power, AGN with small black holes have higher [OIII] luminosities (which we interpret as higher accretion rates) than AGN with big black holes. However, if we scale both radio and emission line luminosities by the black hole mass, we find a correlation between normalized radio power and accretion rate in Eddington units that is independent of black hole mass. There is also a clear correlation between normalized radio power and the age of the stellar population in the galaxy. Present-day AGN with the highest normalized radio powers are confined to galaxies with small black holes. High-redshift, high radio-luminosity AGN could be explained if big black holes were similarly active at earlier cosmic epochs. To investigate why only a small fraction of emission line AGN become radio loud, we create matched samples of radio-loud and radio-quiet AGN and compare their host galaxy properties and environments. The main difference lies in their environments; our local density estimates are a factor 2 larger around the radio-loud AGN. We propose a scenario in which radio-loud AGN with emission lines are located in galaxies where accretion of both cold and hot gas can occur simultaneously. (Abridged)Comment: 18 figures, submitted to MNRA
    • …
    corecore