75 research outputs found
A finite volume scheme for nonlinear degenerate parabolic equations
We propose a second order finite volume scheme for nonlinear degenerate
parabolic equations. For some of these models (porous media equation,
drift-diffusion system for semiconductors, ...) it has been proved that the
transient solution converges to a steady-state when time goes to infinity. The
present scheme preserves steady-states and provides a satisfying long-time
behavior. Moreover, it remains valid and second-order accurate in space even in
the degenerate case. After describing the numerical scheme, we present several
numerical results which confirm the high-order accuracy in various regime
degenerate and non degenerate cases and underline the efficiency to preserve
the large-time asymptotic
HAPEX-Sahel : a large-scale study of land-atmosphere interactions in the semi-arid tropics
The Hydrologic Atmospheric Pilot EXperiment
in the Sahel (HAPEX-Sahel) was carried out in Niger, West Africa, during 1991 -
1992, with an intensive observation period (IOP) in August - October 1992. It
aims at improving the parameterization of land surface atmosphere interactions
at the Global Circulation Model (GCM) gridbox scale. The experiment combines
remote sensing and ground based measurements with hydrological and
meteorological modelling to develop aggregation techniques for use in large
scale estimates of the hydrological and meteorological behaviour of large areas
in the Sahel. The experimental strategy consisted of a period of intensive
measurements during the transition period of the rainy to the dry season, backed
up by a series of long term measurements in a 1° by 1° square in Niger. Three
"supersites" were instrumented with a variety of hydrological and
(micro) meteorological equipment to provide detailed information on the surface
energy exchange at the local scale. Boundary layer measurements and aircraft
measurements were used to provide information at scales of 100 - 500 km2.
All relevant remote sensing images were obtained for this period. This programme
of measurements is now being analyzed and an extensive modelling programme is
under way to aggregate the information at all scales up to the GCM grid box
scale. The experimental strategy and some preliminary results of the IOP are
described
WMO Assessment of Weather and Climate Mortality Extremes: Lightning, Tropical Cyclones, Tornadoes, and Hail
A World Meteorological Organization (WMO) Commission for Climatology international panel was convened to examine and assess the available evidence associated with five weather-related mortality extremes: 1) lightning (indirect), 2) lightning (direct), 3) tropical cyclones, 4) tornadoes, and 5) hail. After recommending for acceptance of only events after 1873 (the formation of the predecessor of the WMO), the committee evaluated and accepted the following mortality extremes: 1) “highest mortality (indirect strike) associated with lightning” as the 469 people killed in a lightning-caused oil tank fire in Dronka, Egypt, on 2 November 1994; 2) “highest mortality directly associated with a single lightning flash” as the lightning flash that killed 21 people in a hut in Manica Tribal Trust Lands, Zimbabwe (at time of incident, eastern Rhodesia), on 23 December 1975; 3) “highest mortality associated with a tropical cyclone” as the Bangladesh (at time of incident, East Pakistan) cyclone of 12–13 November 1970 with an estimated death toll of 300 000 people; 4) “highest mortality associated with a tornado” as the 26 April 1989 tornado that destroyed the Manikganj district, Bangladesh, with an estimated death toll of 1300 individuals; and 5) “highest mortality associated with a hailstorm” as the storm occurring near Moradabad, India, on 30 April 1888 that killed 246 people. These mortality extremes serve to further atmospheric science by giving baseline mortality values for comparison to future weather-related catastrophes and also allow for adjudication of new meteorological information as it becomes available
A predictive model relating daily fluctuations in summer temperatures and mortality rates
<p>Abstract</p> <p>Background</p> <p>In the context of climate change, an efficient alert system to prevent the risk associated with summer heat is necessary. The authors' objective was to describe the temperature-mortality relationship in France over a 29-year period and to define and validate a combination of temperature factors enabling optimum prediction of the daily fluctuations in summer mortality.</p> <p>Methods</p> <p>The study addressed the daily mortality rates of subjects aged over 55 years, in France as a whole, from 1975 to 2003. The daily minimum and maximum temperatures consisted in the average values recorded by 97 meteorological stations. For each day, a cumulative variable for the maximum temperature over the preceding 10 days was defined.</p> <p>The mortality rate was modelled using a Poisson regression with over-dispersion and a first-order autoregressive structure and with control for long-term and within-summer seasonal trends. The lag effects of temperature were accounted for by including the preceding 5 days. A "backward" method was used to select the most significant climatic variables. The predictive performance of the model was assessed by comparing the observed and predicted daily mortality rates on a validation period (summer 2003), which was distinct from the calibration period (1975–2002) used to estimate the model.</p> <p>Results</p> <p>The temperature indicators explained 76% of the total over-dispersion. The greater part of the daily fluctuations in mortality was explained by the interaction between minimum and maximum temperatures, for a day <it>t </it>and the day preceding it. The prediction of mortality during extreme events was greatly improved by including the cumulative variables for maximum temperature, in interaction with the maximum temperatures. The correlation between the observed and estimated mortality ratios was 0.88 in the final model.</p> <p>Conclusion</p> <p>Although France is a large country with geographic heterogeneity in both mortality and temperatures, a strong correlation between the daily fluctuations in mortality and the temperatures in summer on a national scale was observed. The model provided a satisfactory quantitative prediction of the daily mortality both for the days with usual temperatures and for the days during intense heat episodes. The results may contribute to enhancing the alert system for intense heat waves.</p
The International Surface Pressure Databank version 2
The International Surface Pressure Databank (ISPD) is the world's largest collection of global surface and sea-level pressure observations. It was developed by extracting observations from established international archives, through international cooperation with data recovery facilitated by the Atmospheric Circulation Reconstructions over the Earth (ACRE) initiative, and directly by contributing universities, organizations, and countries. The dataset period is currently 1768–2012 and consists of three data components: observations from land stations, marine observing systems, and tropical cyclone best track pressure reports. Version 2 of the ISPD (ISPDv2) was created to be observational input for the Twentieth Century Reanalysis Project (20CR) and contains the quality control and assimilation feedback metadata from the 20CR. Since then, it has been used for various general climate and weather studies, and an updated version 3 (ISPDv3) has been used in the ERA-20C reanalysis in connection with the European Reanalysis of Global Climate Observations project (ERA-CLIM). The focus of this paper is on the ISPDv2 and the inclusion of the 20CR feedback metadata. The Research Data Archive at the National Center for Atmospheric Research provides data collection and access for the ISPDv2, and will provide access to future versions
Uncertainty quantification for kinetic models in socio-economic and life sciences
Kinetic equations play a major rule in modeling large systems of interacting
particles. Recently the legacy of classical kinetic theory found novel
applications in socio-economic and life sciences, where processes characterized
by large groups of agents exhibit spontaneous emergence of social structures.
Well-known examples are the formation of clusters in opinion dynamics, the
appearance of inequalities in wealth distributions, flocking and milling
behaviors in swarming models, synchronization phenomena in biological systems
and lane formation in pedestrian traffic. The construction of kinetic models
describing the above processes, however, has to face the difficulty of the lack
of fundamental principles since physical forces are replaced by empirical
social forces. These empirical forces are typically constructed with the aim to
reproduce qualitatively the observed system behaviors, like the emergence of
social structures, and are at best known in terms of statistical information of
the modeling parameters. For this reason the presence of random inputs
characterizing the parameters uncertainty should be considered as an essential
feature in the modeling process. In this survey we introduce several examples
of such kinetic models, that are mathematically described by nonlinear Vlasov
and Fokker--Planck equations, and present different numerical approaches for
uncertainty quantification which preserve the main features of the kinetic
solution.Comment: To appear in "Uncertainty Quantification for Hyperbolic and Kinetic
Equations
A Lagrangian scheme for the solution of nonlinear diffusion equations using moving simplex meshes
A Lagrangian numerical scheme for solving nonlinear degenerate Fokker{Planck equations in space dimensions d>2 is presented. It applies to a large class of nonlinear diffusion equations, whose dynamics are driven by internal energies and given external potentials, e.g. the porous medium equation and the fast diffusion equation. The key ingredient in our approach is the gradient ow structure of the dynamics. For discretization of the Lagrangian map, we use a finite subspace of linear maps in space and a variational form of the implicit Euler method in time. Thanks to that time discretisation, the fully discrete solution inherits energy estimates from the original gradient ow, and these lead to weak compactness of the trajectories in the continuous limit. Consistency is analyzed in the planar situation, d = 2. A variety of numerical experiments for the porous medium equation indicates that the scheme is well-adapted to track the growth of the solution's support
Multi-dimensional modeling and simulation of semiconductor nanophotonic devices
Self-consistent modeling and multi-dimensional simulation of semiconductor nanophotonic devices is an important tool in the development of future integrated light sources and quantum devices. Simulations can guide important technological decisions by revealing performance bottlenecks in new device concepts, contribute to their understanding and help to theoretically explore their optimization potential. The efficient implementation of multi-dimensional numerical simulations for computer-aided design tasks requires sophisticated numerical methods and modeling techniques. We review recent advances in device-scale modeling of quantum dot based single-photon sources and laser diodes by self-consistently coupling the optical Maxwell equations with semiclassical carrier transport models using semi-classical and fully quantum mechanical descriptions of the optically active region, respectively. For the simulation of realistic devices with complex, multi-dimensional geometries, we have developed a novel hp-adaptive finite element approach for the optical Maxwell equations, using mixed meshes adapted to the multi-scale properties of the photonic structures. For electrically driven devices, we introduced novel discretization and parameter-embedding techniques to solve the drift-diffusion system for strongly degenerate semiconductors at cryogenic temperature. Our methodical advances are demonstrated on various applications, including vertical-cavity surface-emitting lasers, grating couplers and single-photon sources
- …