633 research outputs found
Virtual reality and neuropsychological assessment: The reliability of a virtual kitchen to assess daily-life activities in victims of traumatic brain injury.
Traumatic brain injury (TBI) causes impairments affecting instrumental activities of daily living (IADL). However, few studies have considered virtual reality as an ecologically valid tool for the assessment of IADL in patients who have sustained a TBI. The main objective of the present study was to examine the use of the Nonimmersive Virtual Coffee Task (NI-VCT) for IADL assessment in patients with TBI. We analyzed the performance of 19 adults suffering from TBI and 19 healthy controls (HCs) in the real and virtual tasks of making coffee with a coffee machine, as well as in global IQ and executive functions. Patients performed worse than HCs on both real and virtual tasks and on all tests of executive functions. Correlation analyses revealed that NI-VCT scores were related to scores on the real task. Moreover, regression analyses demonstrated that performance on NI-VCT matched real-task performance. Our results support the idea that the virtual kitchen is a valid tool for IADL assessment in patients who have sustained a TBI
Reconstruction of Hydraulic Data by Machine Learning
Numerical simulation models associated with hydraulic engineering take a wide
array of data into account to produce predictions: rainfall contribution to the
drainage basin (characterized by soil nature, infiltration capacity and
moisture), current water height in the river, topography, nature and geometry
of the river bed, etc. This data is tainted with uncertainties related to an
imperfect knowledge of the field, measurement errors on the physical parameters
calibrating the equations of physics, an approximation of the latter, etc.
These uncertainties can lead the model to overestimate or underestimate the
flow and height of the river. Moreover, complex assimilation models often
require numerous evaluations of physical solvers to evaluate these
uncertainties, limiting their use for some real-time operational applications.
In this study, we explore the possibility of building a predictor for river
height at an observation point based on drainage basin time series data. An
array of data-driven techniques is assessed for this task, including
statistical models, machine learning techniques and deep neural network
approaches. These are assessed on several metrics, offering an overview of the
possibilities related to hydraulic time-series. An important finding is that
for the same hydraulic quantity, the best predictors vary depending on whether
the data is produced using a physical model or real observations.Comment: Submitted to SimHydro 201
Phylogenomics using low-depth whole genome sequencing: a case study with the olive tribe
Species trees have traditionally been inferred from a few selected markers, and genome-wide investigations remain largely restricted to model organisms or small groups of species for which sampling of fresh material is available, leaving out most of the existing and historic species diversity. The genomes of an increasing number of species, including specimens extracted from natural history collections, are being sequenced at low depth. While these datasets are widely used to analyse organelle genomes, the nuclear fraction is generally ignored. Here we evaluate different reference-based methods to infer phylogenies of large taxonomic groups from such datasets. Using the example of the Oleeae tribe, a worldwide-distributed group, we build phylogenies based on single-nucleotide polymorphisms (SNPs) obtained using two reference genomes (the olive and ash trees). The inferred phylogenies are overall congruent, yet present differences that might reflect the effect of the distance to the reference on the amount of missing data. To limit this issue, the genome complexity was reduced by using pairs of orthologous coding sequences as the reference, thus allowing combining SNPs obtained using two distinct references. Concatenated and coalescence trees based on these combined SNPs suggest events of incomplete lineage sorting and/or hybridization during the diversification of this large phylogenetic group. Our results show that genome-wide phylogenetic trees can be inferred from low-depth sequence datasets for eukaryote groups with complex genomes, and histories of reticulate evolution. This opens new avenues for large-scale phylogenomics and biogeographic analyses covering both the extant and historic diversity stored in museum collections
The DIAD Approach to Correlative Synchrotron Xâray Imaging and Diffraction Analysis of Human Enamel
The Dual Imaging and Diffraction (DIAD) beamline at Diamond Light Source (Didcot, U.K.) implements a correlative approach to the dynamic study of materials based on concurrent analysis of identical sample locations using complementary X-ray modalities to reveal structural detail at various length scales. Namely, the underlying beamline principle and its practical implementation allow the collocation of chosen regions within the sample and their interrogation using real-space imaging (radiography and tomography) and reciprocal space scattering (diffraction). The switching between the two principal modes is made smooth and rapid by design, so that the data collected is interlaced to obtain near-simultaneous multimodal characterization. Different specific photon energies are used for each mode, and the interlacing of acquisition steps allows conducting static and dynamic experiments. Building on the demonstrated realization of this state-of-the-art approach requires further refining of the experimental practice, namely, the methods for gauge volume collocation under different modes of beamâsample interaction. To address this challenge, experiments were conducted at DIAD devoted to the study of human dental enamel, a hierarchical structure composed of hydroxyapatite mineral nanocrystals, as a static sample previously affected by dental caries (tooth decay) as well as under dynamic conditions simulating the process of acid demineralization. Collocation and correlation were achieved between WAXS (wide-angle X-ray scattering), 2D (radiographic), and 3D (tomographic) imaging. While X-ray imaging in 2D or 3D modes reveals real-space details of the sample microstructure, X-ray scattering data for each gauge volume provided statistical nanoscale and ultrastructural polycrystal reciprocal-space information such as phase and preferred orientation (texture). Careful registration of the gauge volume positions recorded during the scans allowed direct covisualization of the data from two modalities. Diffraction gauge volumes were identified and visualized within the tomographic data sets, revealing the underlying local information to support the interpretation of the diffraction patterns. The present implementation of the 4D microscopy paradigm allowed following the progression of demineralization and its correlation with time-dependent WAXS pattern evolution in an approach that is transferable to other material systems
Assessing the non-ideality of the CO2-CS2 system at molecular level: A Raman scattering study
The dense phase of CO2-CS2 mixtures has been analysed by Raman spectroscopy as a function of the CO2 concentration (0.02-0.95 mole fractions) by varying the pressure (0.5 MPa up to 7.7 MPa) at constant temperature (313 K). The polarised and depolarised spectra of the induced (nu(2), nu(3)) modes of CS2 and of the nu(1)-2 nu(2) Fermi resonance dyad of both CO2 and CS2 have been measured. Upon dilution with CO2, the evolution of the spectroscopic observables of all these modes displays a \"plateau-like\" region in the CO2 mole fraction 0.3-0.7 never previously observed in CO2-organic liquids mixtures. The bandshape and intensity of the induced modes of CS2 are similar to those of pure CS2 up to equimolar concentration, after which variations occur. The preservation of the local ordering from pure CS2 to equimolar concentration together with the non-linear evolution of the spectroscopic observables allows inferring that two solvation regimes exist with a transition occurring in the plateau domain. In the first regime, corresponding to CS2 concentrated mixtures, the liquid phase is segregated with dominant CS2 clusters, whereas, in the second one, CO2 monomers and dimers and CO2-CS2 hetero-dimers coexist dynamically on a picosecond time-scale. It is demonstrated that the subtle interplay between attractive and repulsive interactions which provides a molecular interpretation of the non-ideality of the CO2-CS2 mixture allows rationalizing the volume expansion and the existence of the plateau-like region observed in the pressure-composition diagram previously ascribed to the proximity of an upper critical solution temperature at lower temperatures. (C) 2013 AIP Publishing LLC
Exploiting X-ray induced anisotropic lattice changes to improve intensity extraction in protein powder diffraction: Application to heavy atom detection
X-ray induced anisotropic variations of cell parameters in porcine pancreatic elastase (PPE) were used in a multi-Pawley refinement in order to improve the deconvolution of overlapping peaks occurring in the high-angle region of the powder pattern. The benefit of combining scans is demonstrated by an improvement in the quality of the isomorphous difference Patterson maps used to detect the positions of heavy atoms in a uranyl derivative of PPE
The SECURE project â Stem canker of oilseed rape: : molecular methods and mathematical modelling to deploy durable resistance
N Evans et al, "The SECURE Project - Stem Canker of oilseed rape: Molecular methods and mathematical modeling to deploy durable resistance", in Vol 4 of the Proceedings of the 12th International Rapeseed Congress : Sustainable Development in Cruciferous Oilseed Crops Production, Wuhan, China, March 26 - 30, 2007. The proceedings are available online at: http://gcirc.org/intranet/irc-proceedings/12th-irc-wuhan-china-2007-vol-4.htmlModelling done during the SECURE project has demonstrated the dynamic nature of the interaction between phoma stem canker (Leptosphaeria maculans), the oilseed rape host (Brassica napus) and the environment. Experiments done with near-isogenic lines of L. maculans to investigate pathogen fitness support field data that suggest a positive effect of the avirulence allele AvrLm4 on pathogen fitness, and that the loss of this allele renders isolates less competitive under field conditions on cultivars without the resistance gene Rlm4. The highlight of molecular work was the cloning of AvrLm1 and AvrLm6. L. maculans is now one of the few fungal species for which two avirulence loci have been cloned. Subsequent research focused on understanding the function of AvrLm1 and AvrLm6 and on the analysis of sequences of virulent isolates to understand molecular evolution towards virulence. Isolates of L. maculans transformed with GFP and/or DsRed were used to follow growth of the fungus in B. napus near-isogenic-lines (NIL) with or without MX (Rlm6) resistance under different temperature and wetness conditions. The results greatly enhanced our knowledge of the infection process and the rate and extent of in planta growth on different cultivars. Conclusions from work to model durability of resistance have been tested under field conditions through a series of experiments to compare durability of resistance conferred by the major resistance gene Rlm6 alone in a susceptible background (EurolMX) or in a resistant background (DarmorMX) under recurrent selection over 4 growing seasons. A major priority of the project was knowledge transfer of results and recommendations to target audiences such as plant breeding companies and extension services. CETIOM developed a âdiversification schemeâ that encourages French growers to make an informed choice about the cultivars that are grown within the rotation based on the resistance genes carried by the individual cultivars. Use of such schemes, in association with survey data on the population structure of L. maculans at both national and European scales will provide opportunities for breeders and the industry to manage available B. napus resistance more effectively.Non peer reviewe
The Endogenous Th17 Response in NO<inf>2</inf>-Promoted Allergic Airway Disease Is Dispensable for Airway Hyperresponsiveness and Distinct from Th17 Adoptive Transfer
Severe, glucocorticoid-resistant asthma comprises 5-7% of patients with asthma. IL-17 is a biomarker of severe asthma, and the adoptive transfer of Th17 cells in mice is sufficient to induce glucocorticoid-resistant allergic airway disease. Nitrogen dioxide (NO2) is an environmental toxin that correlates with asthma severity, exacerbation, and risk of adverse outcomes. Mice that are allergically sensitized to the antigen ovalbumin by exposure to NO2 exhibit a mixed Th2/Th17 adaptive immune response and eosinophil and neutrophil recruitment to the airway following antigen challenge, a phenotype reminiscent of severe clinical asthma. Because IL-1 receptor (IL-1R) signaling is critical in the generation of the Th17 response in vivo, we hypothesized that the IL-1R/Th17 axis contributes to pulmonary inflammation and airway hyperresponsiveness (AHR) in NO2-promoted allergic airway disease and manifests in glucocorticoid-resistant cytokine production. IL-17A neutralization at the time of antigen challenge or genetic deficiency in IL-1R resulted in decreased neutrophil recruitment to the airway following antigen challenge but did not protect against the development of AHR. Instead, IL-1R-/- mice developed exacerbated AHR compared to WT mice. Lung cells from NO2-allergically inflamed mice that were treated in vitro with dexamethasone (Dex) during antigen restimulation exhibited reduced Th17 cytokine production, whereas Th17 cytokine production by lung cells from recipient mice of in vitro Th17-polarized OTII T-cells was resistant to Dex. These results demonstrate that the IL-1R/Th17 axis does not contribute to AHR development in NO2-promoted allergic airway disease, that Th17 adoptive transfer does not necessarily reflect an endogenously-generated Th17 response, and that functions of Th17 responses are contingent on the experimental conditions in which they are generated. © 2013 Martin et al
Relationship between nano-architectured Ti1âxCux thin film and electrical resistivity for resistance temperature detectors
Ti1âxCux thin films were produced by the glancing angle deposition technique (GLAD) for resistance temperature measurements. The deposition angle was fixed at α = 0° to growth columnar structures and α = 45° to growth zigzag structures. The Ti-to-Cu atomic concentration was tuned from 0 to 100 at.% of Cu in order to optimize the temperature coefficient of resistance (TCR) value. Increasing the amount of Cu in the Ti1âxCux thin films, the electrical conductivity was gradually changed from 4.35 to 7.87 Ă 105 Ωâ1 mâ1. After thermal âstabilization,â the zigzag structures of Ti1âxCux films induce strong variation of the thermosensitive response of the materials and exhibited a reversible resistivity versus temperature between 35 and 200 °C. The results reveal that the microstructure has an evident influence on the overall response of the films, leading to values of TCR of 8.73 Ă 10â3 °Câ1 for pure copper films and of 4.38 Ă 10â3 °Câ1 for a films of composition Ti0.49Cu0.51. These values are very close to the ones reported for the bulk platinum (3.93 Ă 10â3 °Câ1), which is known to be one of the best material available for these kind of temperature-related applications. The non-existence of hysteresis in the electrical response of consecutive heating and cooling steps indicates the viability of these nanostructured zigzag materials to be used as thermosensitive sensors.Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding UID/FIS/04650/2013 and Project PTDC/EEI-SII/5582/2014. A. Ferreira and C. Lopes thanks the FCT for Grant SFRH/BPD/102402/2014 and SFRH/BD/103373/2014. The authors thank financial support from the Basque Government Industry Department under the ELKARTEK Programinfo:eu-repo/semantics/publishedVersio
- âŠ