1,461 research outputs found
Glacial in situ survival in the Western Alps and polytopic autopolyploidy in Biscutella laevigata L. (Brassicaceae).
Past climatic changes and especially the ice ages have had a great impact on both the distribution and the genetic composition of plant populations, but whether they promoted speciation is still controversial. The autopolyploid complex Biscutella laevigata is a classical example of polyploidy linked to glaciations and is an interesting model to explore migration and speciation driven by climate changes in a complex alpine landscape. Diploid taxa survived the last glacial maximum in several never-glaciated areas and autotetraploids are clearly dominant in the central parts of the Alps; however, previous range-wide studies failed to identify their diploid ancestor(s). This study highlights the phylogeographical relationships of maternal lineages in the Western Alps and investigates the polyploidy process using plastid DNA sequences (trnS-trnG and trnK-intron) combined with plastid DNA length polymorphism markers, which were transferable among Brassicaceae species. Twenty-one distinct plastid DNA haplotypes were distinguished in 67 populations densely sampled in the Western Alps and main lineages were identified by a median-joining network. The external Alps harboured high levels of genetic diversity, while the Central Alps contained only a subset of haplotypes due to postglacial recolonization. Several haplotypes were restricted to local peripheral refugia and evidence of in situ survival in central nunataks was detected by the presence of highly differentiated haplotypes swamped by frequent ones. As hierarchical genetic structure pointed to an independent evolution of the species in different biogeographical districts, and since tetraploids displayed haplotypes belonging to different lineages restricted to either the northern or the southern parts of the Alpine chain, polytopic autopolyploidy was also apparent in the Western Alps
Gene polymorphisms for elucidating the genetic structure of the heavy-metal hyperaccumulating trait in Thlaspi caerulescens and their cross-genera amplification in Brassicaceae.
Genetic polymorphism was investigated in Thlaspi caerulescens J. & C. Presl at 15 gene regions, of which seven have been identified to putatively play a role in heavy-metal tolerance or hyperaccumulation. Single nucleotide and length polymorphisms were assessed at four cleaved amplified polymorphic sequences (CAPS) and 11 simple sequence repeat (microsatellite) loci, respectively. The utility of these loci for genetic studies in T. caerulescens was measured among seven natural populations (135 individuals). Fourteen loci rendered polymorphism, and the number of alleles per locus varied from 2 to 5 and 1 to 27 for CAPS and microsatellites, respectively. Up to 12 alleles per locus were detected in a population. The global observed heterozygosity per population varied between 0.01 and 0.31. Additionally, cross-species/genera amplification of loci was investigated on eight other Brassicaceae (five individuals per population). Overall, 70% of the cross-species/genera amplifications were successful, and among them, more than 40% provided intraspecific polymorphisms within a single population. This indicates that such markers may, as well, allow comparative population genetic or mapping studies between and within several Brassicaceae, particularly for genes involved in traits such as heavy-metal tolerance and/or hyperaccumulation
NADP-Malate Dehydrogenase Gene Evolution in Andropogoneae (Poaceae): Gene Duplication Followed by Sub-functionalization
• Background and Aims Plastid NADP-dependent malate dehydrogenase (MDH) catalyses the conversion of oxaloacetate to malate. In C4 plants, it is involved in photosynthetic carbon assimilation. In Poaceae, one NADP-MDH gene has been identified in rice (C3; Erhartoideae) and maize (C4; Panicoideae), whereas two tandemly repeated genes have been identified in Sorghum (C4; Panicoideae). In the present study, the molecular evolution of the NADP-MDH multigene family was investigated in order to analyse how the C4 isoform has evolved over a broader range of panicoid grasses. • Methods Polymerase chain reaction (PCR)-based cloning was used to isolate cDNAs encoding NADP-MDHs from 15 species of Panicoideae. A gene phylogeny was reconstructed based on cDNA sequences using distance and maximum parsimony methods. Episodic selection along some branches of the phylogenetic tree was tested by analysing non-synonymous and synonymous rate ratios.Transcription of NADP-MDH genes was compared in green leaves of five accessions of Saccharum, Sorghum and Vetiveria using a semi-quantitative PCR approach. • Key Results Phylogenetic analyses of these data support the existence of two NADP-MDH gene lineages (NMDH-I and NMDH-II) in several Andropogoneae (i.e. Saccharum, Sorghum and Vetiveria). Episodic positive selection was shown along the basal branch of the NMDH-II clade. Three amino acid modifications allow the two gene lineages to be distinguished, suggesting a positive selection at these sites. In green leaves, we showed that the transcript accumulation was higher for NMDH-I than for NMDH-II. • Conclusions It is hypothesized that the maintenance of both NADP-MDH genes in some Andropogoneae is due to a partition of the original functions across both copies. NMDH-I probably corresponds to the C4 isoform as previously suggested. Nevertheless, some C4 species (e.g. maize) only have one gene which should be selected for its high expression level in leaves. This study confirms that gene duplicates have been recruited for C4 photosynthesis but are not required in every cas
Distribution, shape and clonal growth of the rare endemic tree Olea europaea subsp. laperrinei (Oleaceae) in the Saharan mountains of Niger
Can microsatellite data allow identification of oleaster Plio-Pleistocene refuge zones in the Mediterranean Basin?
International audienc
Relation between respiratory variations in pulse oximetry plethysmographic waveform amplitude and arterial pulse pressure in ventilated patients.
IntroductionRespiratory variation in arterial pulse pressure is a reliable predictor of fluid responsiveness in mechanically ventilated patients with circulatory failure. The main limitation of this method is that it requires an invasive arterial catheter. Both arterial and pulse oximetry plethysmographic waveforms depend on stroke volume. We conducted a prospective study to evaluate the relationship between respiratory variation in arterial pulse pressure and respiratory variation in pulse oximetry plethysmographic (POP) waveform amplitude.MethodThis prospective clinical investigation was conducted in 22 mechanically ventilated patients. Respiratory variation in arterial pulse pressure and respiratory variation in POP waveform amplitude were recorded simultaneously in a beat-to-beat evaluation, and were compared using a Spearman correlation test and a Bland-Altman analysis.ResultsThere was a strong correlation (r2 = 0.83; P < 0.001) and a good agreement (bias = 0.8 +/- 3.5%) between respiratory variation in arterial pulse pressure and respiratory variation in POP waveform amplitude. A respiratory variation in POP waveform amplitude value above 15% allowed discrimination between patients with respiratory variation in arterial pulse pressure above 13% and those with variation of 13% or less (positive predictive value 100%).ConclusionRespiratory variation in arterial pulse pressure above 13% can be accurately predicted by a respiratory variation in POP waveform amplitude above 15%. This index has potential applications in patients who are not instrumented with an intra-arterial catheter
Gene polymorphisms for elucidating the genetic structure of the heavy-metal hyperaccumulating trait in Thlaspi caerulescens and their cross-genera amplification in Brassicaceae
Genetic polymorphism was investigated in Thlaspi caerulescens J. & C. Presl at 15 gene regions, of which seven have been identified to putatively play a role in heavy-metal tolerance or hyperaccumulation. Single nucleotide and length polymorphisms were assessed at four cleaved amplified polymorphic sequences (CAPS) and 11 simple sequence repeat (microsatellite) loci, respectively. The utility of these loci for genetic studies in T. caerulescens was measured among seven natural populations (135 individuals). Fourteen loci rendered polymorphism, and the number of alleles per locus varied from 2 to 5 and 1 to 27 for CAPS and microsatellites, respectively. Up to 12 alleles per locus were detected in a population. The global observed heterozygosity per population varied between 0.01 and 0.31. Additionally, cross-species/genera amplification of loci was investigated on eight other Brassicaceae (five individuals per population). Overall, 70% of the cross-species/genera amplifications were successful, and among them, more than 40% provided intraspecific polymorphisms within a single population. This indicates that such markers may, as well, allow comparative population genetic or mapping studies between and within several Brassicaceae, particularly for genes involved in traits such as heavy-metal tolerance and/or hyperaccumulatio
High genetic diversity and clonal growth in relict populations of Olea europaea subsp. laperrinei (Oleaceae) from Hoggar, Algeria.
The Laperrine's olive (Olea europaea subsp. laperrinei) is an endemic tree from Saharan massifs. Its populations have substantially regressed since the Pleistocene and are presently distributed in a fragmented habitat. Long-term persistence of this taxon is uncertain and programmes of preservation have to be urgently implemented. To define a conservation strategy, the genetic diversity and breeding system of this tree have to be investigated.
One hundred and eleven ramets were prospected in the laperrinei populations from the Tamanrasset region, southern Algeria. Genetic polymorphism was revealed at nuclear and chloroplast DNA (cpDNA) microsatellite loci allowing a comparative assessment of the genetic diversity of laperrinei and Mediterranean populations based on bi-parental and maternal markers. Additionally, nuclear microsatellite markers enabled the genotypes to be identified unambiguously.
Based on nuclear microsatellite data, the total diversity was high (Ht=0.61) in laperrinei populations and similar to that observed in western Mediterranean populations. A substantial cpDNA diversity (Ht=0.19) was also observed. Genetically identical ramets originated from the same stump (which can cover >80 m2) were identified in each population. Sixteen per cent of genets exhibited more than one ramet. In addition, several cases of somatic mutations were unambiguously revealed in distinct ramets stemming from the same stump.
These data show that highly isolated and small laperrinei populations are able to maintain a high genetic diversity. This supports the existence of relict trees persisting for a very long time (probably since the last humid transition, 3000 years ago). It is proposed that the very long persistence associated with an asexual multiplication of highly adapted trees could be a strategy of survival in extreme conditions avoiding a mutational meltdown due to reproduction in reduced populations
A set of primers for length and nucleotide-substitution polymorphism in chloroplastic DNA of Olea europaea L. (Oleaceae)
A set of primers for length and nucleotide-substitution polymorphism in chloroplastic DNA of Olea europaea L. (Oleaceae)
Chloroplastic DNA (cpDNA) variation at five microsatellite motifs, two insertion-deletion sites, and eight nucleotide substitution sites was investigated in the Olea europaea complex. Primers were designed for flanking regions of these sites to amplify short cpDNA regions. They provided polymorphism when polymerase chain reaction (PCR) products from a representative sample of 128 O. europaea individuals were either resolved by size into polyacrylamide gels (length polymorphism) or digested with restriction enzymes (nucleotide-substitution polymorphism). These polymorphisms serve to distinguish most of the cytoplasmic haplotypes previously recognized. Potential application of these markers in O. europaea includes phylogeography, conservation and germplasm identification, even when using poorly preserved material from herbarium specimens or forensic and archaeological materials.This work was supported by the project BIOD-IBERIA (A82).Peer Reviewe
- …
