
Abstract Genetic polymorphism was investigated in

Thlaspi caerulescens J. & C. Presl at 15 gene regions, of

which seven have been identified to putatively play a

role in heavy-metal tolerance or hyperaccumulation.

Single nucleotide and length polymorphisms were as-

sessed at four cleaved amplified polymorphic se-

quences (CAPS) and 11 simple sequence repeat

(microsatellite) loci, respectively. The utility of these

loci for genetic studies in T. caerulescens was measured

among seven natural populations (135 individuals).

Fourteen loci rendered polymorphism, and the number

of alleles per locus varied from 2 to 5 and 1 to 27 for

CAPS and microsatellites, respectively. Up to 12 al-

leles per locus were detected in a population. The

global observed heterozygosity per population varied

between 0.01 and 0.31. Additionally, cross-species/

genera amplification of loci was investigated on eight

other Brassicaceae (five individuals per population).

Overall, 70% of the cross-species/genera amplifica-

tions were successful, and among them, more than

40% provided intraspecific polymorphisms within a

single population. This indicates that such markers

may, as well, allow comparative population genetic or

mapping studies between and within several Brassica-

ceae, particularly for genes involved in traits such as

heavy-metal tolerance and/or hyperaccumulation.

Keywords CAPS Æ Gene marker Æ Microsatellite Æ
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Introduction

The development of studies on phytoremediation

greatly increased the interest for heavy-metal-tolerant

and hyperaccumulating plants because of their poten-

tial use in the cleaning of soils contaminated with toxic

metals (Pollard et al. 2002). Several plant models have

been described, particularly in Brassicaceae (Peer et al.

2003). Thlaspi caerulescens J. & C. Presl was recently

considered as the most promising model species due to

its physiological, morphological and genetic charac-

teristics and its genetic proximity to Arabidopsis tha-

liana (L.) Heynh., a reference species in plant genetics

(Assunçao et al. 2003a; Peer et al. 2003). The physio-

logical and molecular bases of heavy-metal hyperac-

cumulation are not yet completely understood (Pollard

et al. 2002; Bert et al. 2003; Lugon-Moulin et al. 2004),

but several genes putatively involved in this character

have been identified (e.g. Pence et al. 2000; Lombi

et al. 2002; Bovet et al. 2003; Bernard et al. 2004;

Roosens et al. 2005). For instance, genes or mRNAs

encoding transporters for various metals such as Zn, Fe

and putatively Cd have been isolated (e.g. ZNT and

IRT gene families; Mäser et al. 2001; Lombi et al.

2002). Transcription of such genes can be highly

influenced by heavy-metal presence in nutriments

(Bovet et al. 2003; Bernard et al. 2004) and can vary

considerably between metallicolous and nonmetallic-

olous ecotypes (Lombi et al. 2002).

In Europe, T. caerulescens is naturally distributed

on soils with variable heavy-metal composition,

N. Basic Æ G. Besnard (&)
Department of Ecology and Evolution, Biophore,
University of Lausanne, 1015 Lausanne, Switzerland
e-mail: gbesnard@unil.ch

J Plant Res (2006) 119:479–487

DOI 10.1007/s10265-006-0011-x

123

REGULAR PAPER

Gene polymorphisms for elucidating the genetic structure
of the heavy-metal hyperaccumulating trait in Thlaspi
caerulescens and their cross-genera amplification
in Brassicaceae

N. Basic Æ G. Besnard

Received: 12 December 2005 / Accepted: 12 May 2006 / Published online: 8 August 2006
� The Botanical Society of Japan and Springer-Verlag 2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/159154699?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


particularly for Zn and Cd. Tolerance and hyperaccu-

mulation for these metals was found to be highly

variable between populations (Roosens et al. 2003).

Isozyme markers have been developed to analyse the

systematic, the population genetic structure and the

mating system of T. caerulescens (Koch et al. 1998;

Dubois et al. 2003). These reports, as well as a

phylogeographic reconstruction, may bring new in-

sights into the understanding of the evolution of

heavy-metal tolerance or hyperaccumulation in

T. caerulescens. However, only few markers are cur-

rently available. Thus, increasing the number of

variable loci is needed for further genomic investi-

gations. Development of such markers defined in

genes may be also very useful because they can be

genera-transferable and permit the comparison be-

tween T. caerulescens and related species (e.g. Kuitti-

nen et al. 2002). In addition, markers linked to coding

regions, especially to those involved in heavy-

metal tolerance and hyperaccumulation, should be of

particular interest. Those genetic markers could be

used to characterise natural populations and analyse

how the genetic diversity structure is related to soil

characteristics and plant hyperaccumulation efficien-

cies. This, in turn, would allow the identification of

genes under adaptive selection. Indeed, the higher

genetic differentiation revealed at markers defined in

genes potentially involved in heavy-metal tolerance

and/or hyperaccumulation can be interpreted as sig-

natures of natural selection (e.g. Beaumont and

Nichols 1996). The population structure analysis

combining such markers and markers unrelated to

metal homeostasis could be used to detect which

markers are under selective pressures related to the

heavy-metal content of soil or the amount of metal

accumulated in plant. Furthermore, polymorphisms

in genes putatively involved in heavy-metal tolerance

or hyperaccumulation may be investigated on prog-

enies of controlled crosses. Detection of possible

cosegregation of the hyperaccumulation trait with

known quantitative trait loci (QTLs) would then be

possible to test (Assunçao et al. 2003b, 2006; Frérot

et al. 2003; Zha et al. 2004).

In this context, we developed a set of primers

amplifying microsatellite and cleaved amplified poly-

morphic sequence (CAPS) loci located in several

coding genes of T. caerulescens. We focused particu-

larly on genes putatively involved in the heavy-metal

responses. These markers were then used to characte-

rise seven populations of T. caerulescens. Furthermore,

the transferability of each gene marker was tested on

eight other Brassicaceae species, of which several are

related to heavy-metal-tolerant plants.

Materials and methods

Plant material and DNA extraction

Individuals of T. caerulescens (2n = 2x = 14) were

prospected on five natural sites in Switzerland: three

populations of Jura [coded J1 (West Jura), J8 and J12

(Central Jura)] and two in the Alps (coded A2 and A5).

Soil and plant heavy-metal composition have been

previously characterised at each site, and significant

differences were observed in soil HNO3-extractable

and shoot Cd and Zn concentrations (Basic et al. 2006a,

b). Between 18 and 21 individuals were sampled in each

population. In addition, two metallicolous populations

from Ganges (G; France) and Prayon (P; Belgium)

differing in their capacity to accumulate Cd (Lombi

et al. 2000; Roosens et al. 2003) were sampled with 20

and 17 individuals per population, respectively. For

eight other Brassicaceae species, five individuals were

sampled in natural fields in Switzerland: Thlaspi arvense

L. (2n = 2x = 14), Arabidopsis thaliana (L.) Heynh.

(2n = 2x = 10), Brassica napus L. (2n = 4x = 20),

Sinapis arvensis L. (2n = 2x = 18), Biscutella laevigata

L. (2n = 2x = 18), Capsella bursa-pastoris (L.) Medik.

(2n = 4x = 32), Arabis hirsuta (L.) Scop. (2n = 4x = 32)

and Erophila praecox (L.) Chev. (2n = 4x = 36). These

species were chosen to be representative of a large

taxonomical range in the Brassicaceae family (Yang

et al. 1999; Koch et al. 2001). We extracted DNA of

each individual from 100 mg of leaf using the FastDNA

kit (Qbiogene, Inc., Carlsbad, CA, USA).

Genetic marker development

Investigated genes and primer design

We selected accessions of Thlaspi available in public

DNA databanks (in June 2004). We looked for mi-

crosatellite motifs using the findpatterns software

(GCG package, http://www.accelrys.com/products/

gcg_wisconsin_package/), and when several accessions

were available for a gene, substitution variation in the

coding sequence (cds) or noncoding sequence [i.e.

untrancribed sequence of cDNA (UTR) and intron].

Based on these data, we looked for polymorphism in

ten genes: ZNT1, ZNT2, ZNT5, IRT1, IRT2, E2F1,

WRKY, AGAMOUS, CP and up1 (Table 1). Primers

(Tables 2, 3) were defined for flanking regions of each

region displaying a microsatellite motif (ZNT5, IRT1,

WRKY, AGAMOUS, CP, up1) or a substitution

leading to restriction-site polymorphism (ZNT1,

ZNT2, IRT2, E2F1). When possible, primers were

designed in conserved regions (particularly in exons)
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between Thlaspi and Arabidopsis to allow for a better

cross-genera amplification of markers in Brassicaceae

(Kuittinen et al. 2002). Seven of these genes (i.e. IRT1,

IRT2, E2F1, WRKY, ZNT1, ZNT2 and ZNT5) were

considered to be putatively implicated in the heavy-

metal hyperaccumulation and tolerance responses

(ZNT1, ZNT2 and ZNT5: Pence et al. 2000; IRT1 and

IRT2: Lombi et al. 2002; E2F1: N.S. Pence and L.V.

Kochian, unpublished results; WRKY: Susuki et al.

2001).

Table 2 Characteristics of cleaved amplified polymorphic sequences (CAPS) loci: Genbank accession numbers, primer pairs used for
polymerase chain reaction (PCR) amplification, specific PCR conditions [annealing temperature (Ta) and MgCl2 concentration],
location of the restriction site (RS) polymorphism, number (N) and size of alleles revealed

Locus
name

Genbank
accessions
no.

Primer (5¢ fi 3¢) Ta

(�C)
MgCl2
(mM)

RS
polymorphism
location
in the gene

N Allele size
(bp)

Tc-ZNT1 AF133267, f. TTCGTGCTCATGCAGCTCAC 60 1.5 Intron – PagIa 5 251 fi 251
AF275751, r. Hex-GACACAATCCCAAGCTCC 252 fi 252
AJ313521, 252 fi 142

+ 110
AJ746204, 253 fi 253
AM162547 255 fi 145

+ 110
Tc-ZNT2 AF275752, f. TTACCGGAGTTTCCTTGGAAG 57 3 CDS – HpaII 2 141 fi 141

AF292370, r. CAGAATGAGTAGTAGCTTCCC
AJ538346 141 fi 105

+ 36
Tc-E2F1 AJ746205, f. CCAGCCGCGGATCTGCCTTCb 53 1.5 5¢ UTR – TaqI 2 205 fi 187

+ 18
AJ746206 r. GGATGATACTGCCGCTTCGAAG 205 fi 167

+ 20 + 18
Tc-IRT2 AJ746209, f. CATGGTGTTGTGCTAGCAAC 53 1.5 Intron – MseI 3 231 fi 94 + 5

+ 19 + 113
AJ746210 r. Fam-GAGATAGTCCAATGACCACAG 231 fi 99

+ 19 + 113
231 fi 118 + 113

aThe restriction enzyme used to reveal polymorphism (nucleotide substitution) is indicated
bBold nucleotide indicates a nucleotide change comparatively to the reference Accession (C fi T) to create an absence/presence
polymorphism of a TaqI restriction site

Table 1 General features of the 15 genomic DNA regions (genes) characterised for sequence polymorphism in the present study

Gene code Putative homologous gene
in Arabidopsis thaliana
and encoded protein

Genomic location
in Arabidopsis thaliana

Tc-ZNT1 At1g10970 – Zn and Cd transporter Chr 1 – U95973
Tc-ZNT2 At1g60960 – Putative Zn transporter Chr 1 – AC018908
Tc-ZNT5 At1g05300 – Putative Zn transporter Chr 1 – AC000098
Tc-E2F1 At5g22220 – E2F transcription factor-1 Chr 5 – AL589883
Tc-IRT1 At4g19690 – Putative Fe(II) transporter-1 Chr 4 – AL024486
Tc-IRT2 At4g19680 – Putative Fe(II) transporter-2 Chr 4 – AL024486
Tc-WRKY At4g31550 – WRKY transcription factor Chr 4 – AL080283
Tc-AGAMOUS At4g18960 – Floral homeotic protein AGAMOUS Chr 4 – AL021711
Tc-CP At1g30630 – Putative coatomer protein Chr 1 – AC007060
Tc-up1 At2g47440 – Unknown protein Chr 2 – AC002535
Tc-up2 (Ap5)a At3g01860 – Unknown protein Chr 3 – AC010797
Tc-up3 (Ap6) At1g16500 – Unknown protein Chr 1 – AC006341
Tc-NOD (Ap7) At4g30420 – Nodulin-like protein Chr 4 – AF160182
Tc-up4 (Ap8) At3g25410 – Unknown protein Chr 3 – AB025639
Tc-bHLH (Na10-G10) At5g04150 – bHLH transcription factor Chr 5 – AL391716

Chr chromosome
aMarker code of the homologous locus in Alliaria (Durka et al. 2004) and Brassica (Lowe et al. 2002) is given in parentheses
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Additionally, microsatellite loci isolated from

Brassicaceae genera related to Thlaspi [Brassica spp.

(Lowe et al. 2002) and Alliaria petiolata (Durka et al.

2004)] were recently available in public databanks.

Gene sequences homologous to 14 (74%) of these loci

were identified in A. thaliana using the BlastN software

(http://www. ncbi.nlm.nih.gov): Ni2B01, Ni2-C12, Ni2-

E04, Na10-B10, Na10-F06, Na10-G10, O109-A03 and

O109-A06 from Brassica (Lowe et al. 2002) and Ap1,

Ap3, Ap5, Ap6, Ap7 and Ap8 from Alliaria (Durka

et al. 2004). Degenerated microsatellite motifs, con-

taining at least five successive repeated dinucleotide

motifs, were found again in Arabidopsis for loci Ap1,

Ap5, Ap6, Ap7 and Ap8 (data not shown) whereas

none was found at the nine other loci. Dinucleotide

repeats were always located in untranscribed gene re-

gions (intron or UTR). Conserved sequences between

Alliaria or Brassica and Arabidopsis for flanking re-

gions (particularly in exons) of untranscribed gene re-

gions were detected for loci Ap5, Ap6, Ap7, Ap8, Ni2-

E04 and Na10-G10. Specific primers were designed in

these regions (Tables 1, 3). They were then used in

polymerase chain reaction (PCR) amplification (see

below for the PCR protocol) and direct sequencing of

homologous loci in one individual of T. caerulescens

(sequence accessions AJ746213 to AJ746217 and

AJ746248). Dinucleotide motifs were detected in five

of the six investigated loci in T. caerulescens: Ap5,

Ap6, Ap7 Ap8, and Na10-G10. These five loci were

renamed Tc-up2, Tc-up3, Tc-NOD, Tc-up4 and Tc-

bHLH, respectively (Table 1).

To summarise, 14 of the 15 investigated loci are

located in untranscribed spacers (e.g. intron or UTR)

of genes. Only the restriction site polymorphism at

the Tc-ZNT2 locus is directly located in the coding

sequence but is due to a synonymous substitution

that consequently may not be directly under selec-

tion. Additionally, each of the 15 studied genes

displays a high sequence identity with one expressed

single-copy gene in the Arabidopsis genome

(Table 1).

PCR protocol and polymorphism detection

For the PCR amplification of each locus, reaction

mixtures contained 50 ng of DNA template, 1· reac-

tion buffer, 0.2 mM dNTPs, 1.5 mM MgCl2, 0.2 lM of

each oligonucleotide primer (one 5¢ labelled with a

fluorochrome; Applied Biosystems; Tables 2, 3) and

0.75 U of DNA polymerase (Qbiogene) in a total

volume of 25 ll. Reaction mixtures were incubated in a

thermocycler (T1, Biometra) firstly for 4 min at 94�C

Table 3 Characteristics of microsatellite loci: GenBank accession numbers, primer pairs used for polymerase chain reaction (PCR)
amplification, specific PCR conditions (annealing temperature (Ta) and MgCl2 concentration), location of the microsatellite
polymorphism, number (N) and size range of alleles revealed

Locus name GenBank
accessions
no.

Primer (5¢ fi 3¢) Ta

(�C)
MgCl2
(mM)

Microsatellite
location
in the gene and
repeated motif

N Allele
size
(bp)

Tc-ZNT5 AF292029 f. AATCACACAAAACGTTAAGCTC 53 1.5 5¢ UTR – (CTT)4

CAT(CT)5

1 157
r. Hex-AAGGTATGGCGGCGATCTTG

Tc-IRT1 AJ746208 f. CTTGCGATATCGAGTCATTGC 53 1.5 Intron – (AT)11 10 173–195
r. Fam-TCCAATGACCACAGAGTGAAC

Tc-WRKY AJ746211 f. TTCTCCGGAAAAGTCTCCGG 50 2.5 Intron – (T)8 - (A)8 5 438–441,
672r. Fam-CTCACGGTTCTCTTCATCCG

Tc-AGAMOUS AY253254, f. Hex-CCTCCATTGTTGTTAATGTCTG 53 1.5 Intron –
(TC)5TT(TC)4

2 142–144
AY253266 r. TACTCTCACTTACCATCACATG

Tc-CP AJ746244 f. TTTGGAGTTAGACACGGATCTG 53 1.5 5¢ UTR – (GAA)7 5 151–164
r. Hex- GTTGATCGCAGCTTGATAAGC

Tc-up1 AJ746212 f. Fam-TGCTCTGTTTCTCTCCACATTC 53 1.5 5¢ UTR – (CA)5

(CT)8CA(CT)4

8 132–170
r. TTCCTTGCTTCTTCTCTTCCA

Tc-up2 AJ746213 f. Hex-TGAGAAGAGGAGACACAGGAAC 53 1.5 Intron – (AG)5 -
(AG)6 - (GA)5

3 234–244
r. CACTTACCAAATCGAAAACTGCTCC

Tc-up3 AJ746214 f. Hex-GAGGAGATCGCGAGTCATGAG 53 5 5¢ UTR – (CT)10 22 172–288
r. CTGCCTAACGTACCGCATAACTG

Tc-NOD AJ746215 f. AAGTACGTGTACGCCAACCG 53 5.5 5¢ UTR – (TC)11 27 216–312
r. Fam-TGTACTCCTCTAACTTCCCC

Tc-up4 AJ746216 f. Fam-GTTTTGTCCGCTTTGCTTCC 53 1.5 Intron – (CT)13 8 255–266
r. GCCATAGACTTTCTCATTGATTC

Tc-bHLH AJ746217 f. CTTGGAAACATTGGTGTTAAGG 53 1.5 Intron – (TC)6 4 144–150
r. Fam-GATTCCATCTCAAATCCGGTC

482 J Plant Res (2006) 119:479–487

123



and then for 36 cycles consisting of 45 s at 94�C, 45 s at

the defined annealing temperature (Tables 2, 3) and

1 min at 72�C. The last cycle was followed by a 10 min

extension at 72�C. For microsatellite loci, electropho-

resis of PCR products was directly carried out on a

denaturing 5% polyacrylamide gel using an automated

sequencer (ABI 377; Applied Biosystems). For loci Tc-

E2F1, Tc-ZNT1, Tc-ZNT2 and Tc-IRT2, PCR prod-

ucts were digested with a specific restriction enzyme

(Table 2) to reveal CAPS. Restriction fragments were

electrophoresed either on a 2.8% agarose gel and vis-

ualised by ethidium bromide staining (loci Tc-E2F1

and Tc-ZNT2) or on a denaturing 5% polyacrylamide

gel, as previously described (loci Tc-IRT2 and Tc-

ZNT1). The size of DNA fragments was estimated

against the 100-bp ladder (Gibco-BRL) or the 500

ROX size standard (Applied Biosystems) on agarose

and acrylamide gels, respectively.

Data analysis

For T. caerulescens populations, alleles were scored for

each individual. Expected (He) and observed (Ho)

heterozygosities were calculated and compared at each

locus, and the fixation index within each population

(Fis) across all loci was obtained with the GENETIX

software (version 4.03; Belkhir et al. 2004). A test of

the significance of association between genotypes at

pairs of loci across all populations was performed with

the FSTAT software (version 2.9.3, Goudet 2001). The

excess of homozygotes at each locus and for each

population was analysed with the MICRO-CHECKER

software (Van Oosterhout et al. 2004). When an excess

of homozygotes was observed, a null allele estimator

for nonequilibrium populations was used to estimate

null allele frequencies (Van Oosterhout et al. 2006). As

the algorithm requires preliminary and independent

estimate of fixation index (Fis), two Fis were used, 0.36

and 0.64, corresponding respectively to fixation indices

found on allozymes in metalliferous (from France and

Belgium) and nonmetalliferous (from France and

Luxembourg) T. caerulescens populations (Dubois

et al. 2003).

Results and discussion

Polymorphic loci in T. caerulescens

Polymorphism was found in different populations of

T. caerulescens at 14 of the 15 loci (Tables 2, 3, 4).

Locus Tc-ZNT5 was the only one to show no variation

between populations (Table 3). The number of alleles

at CAPS and microsatellite loci varied from 2 to 5 and

1 to 27, respectively. Length-mutational events were

revealed at ten microsatellite loci plus the Tc-ZNT1

locus. Polymorphism in genes putatively involved in

the variable capacities of Cd hyperaccumulation was

revealed, particularly at loci Tc-IRT1, Tc-IRT2, Tc-

ZNT1 and Tc-ZNT2 (Lasat et al. 2000; Pence

et al. 2000; Lombi et al. 2002; Bert et al. 2003). Fur-

thermore, the locus pair Tc-E2F1 and Tc-AGAMOUS

as well as Tc-IRT1 and Tc-IRT2 presented a significant

genotypic linkage disequilibrium (P < 0.05). Linkage

disequilibrium could be due to a physical linkage be-

tween loci. For example, the genes IRT1 and IRT2 are

tightly linked in the Arabidopsis genome (chromosome

4; GenBank accession AL024486), and the genotypic

linkage disequilibrium between these loci may indicate

that this is also the case in T. caerulescens. But other

factors could, as well, lead to the linkage disequilib-

rium observed, including inbreeding, population

admixture or selection (Flint-Garcia et al. 2003; Gupta

et al. 2005).

Intrapopulation gene polymorphism

in T. caerulescens

The number of alleles per population (N), expected

(He), observed (Ho) heterozygosities and fixation

indices (Fis) within populations are shown in Table 4.

We detected up to 12 alleles for two loci in a popula-

tion (Tc-up3 and Tc-NOD in Ganges; Table 4). The

genetic diversity of T. caerulescens populations varied

between 0.31 (Ganges) and 0.17 (J8) whereas A2 was

nearly fixed (0.01). The Ho was, in general, lower than

He. Populations may depart from expected Hardy–

Weinberg proportions as a result of local breeding

structure or admixture. The Fis values for the Swiss

populations was comprised between 0.33 (A5, J12) and

0.44 (J8; Table 4). Interestingly, the fixation index of

Prayon obtained with the variable loci of the present

study (Fis = 0.42) was close to the one reported with

isozyme markers (Fis = 0.51; Dubois et al. 2003). In

contrast, the lowest fixation index was found for Gan-

ges (Fis = 0.15). The failure of amplification of partic-

ular alleles (i.e. null alleles) resulting from

polymorphism on PCR priming site or an absence of

large-allele amplification (large allele dropout) can

also explain lower Ho than expected. Among the

developed loci, Tc-ZNT1, Tc-ZNT2, Tc-IRT1, Tc-

IRT2, Tc-up1, Tc-up3, Tc-NOD and Tc-up4 presented

a significant excess in homozygotes in some popula-

tions (Table 4). However, when considering an

inbreeding coefficient of 0.64, no loci showed a signif-

icant signal of null alleles (Table 5).
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Utility of markers in T. caerulescens

We propose to use the present gene markers for spe-

cific applications in T. caerulescens. Compared with

isozyme markers, which present a limited level of

variation (maximum of four alleles; Dubois et al. 2003),

use of the present markers will be more suitable to

study T. caerulescens natural populations. However,

several additional remarks have to be considered for

their application in population genetics. First, some of

the present markers may correspond to nonneutrally

evolving loci, and this would violate population

genetics assumptions. Indeed, for such loci, strong

physical linkage between the polymorphism investi-

gated and mutations under selection may result in

‘‘hitchhiking’’ effects (Gupta et al. 2005). To identify

loci under selection, a combination of different mark-

ers [amplified fragment length polymorphism (AF-

LPs), microsatellites and CAPS] has to be

recommended, and simulations should be performed to

model neutral loci and allow the identification of out-

lying loci (Beaumont and Nichols 1996). Based on this

methodology, Swiss populations were recently charac-

terised (N. Basic et al., in preparation). Second, some

loci (particularly Tc-up4) could display null alleles in

some populations (Tables 4, 5), and such markers have

Table 5 Null allele frequencies estimated according to Van Oosterhout et al. (2006) for each locus presenting a significant excess of
homozygotes per population. Two fixation indices previously calculated for metallicolous (Fis

M = 0.36) and nonmetallicolous
(Fis

NM = 0.64) Thlaspi caerulescens populations were used for simulations (Dubois et al. 2003)

Population Tc-ZNT1 Tc-ZNT2 Tc-IRT1 Tc-IRT2 Tc-up1 Tc-up3 Tc-NOD Tc-up4

J1
Fis

M – 0.191 – 0.177 – – 0.273 –
Fis

NM – – – – – – – –
J8
Fis

M – 0.096 – 0.035 – 0.146 – 0.197
Fis

NM – – – – – – – –
J12
Fis

M 0.221 – – – – – – 0.262
Fis

NM – – – – – – – –
A5
Fis

M – – – – – – – 0.186
Fis

NM – – – – – – – –
P
Fis

M – – – – – – 0.251 0.324
Fis

NM – – – – – – – –

– means that the assessed null allele frequency is inferior to 1% for the considered Fis value

Table 6 Cross-species/genera amplification of loci in Brassicaceae: size range (in bp) of polymerase chain reaction (PCR) products

Locus TA AT AH BN SA EP CBP BL

Tc-ZNT1 249 370 281 241–272 247–262 257 418–430 –
Tc-ZNT2 139 139 – m – m 139 –
Tc-ZNT5 157 160 154–157 154–157 157 98 154–157 157
Tc-CP 145 139–161 149 152 136–162 121 159–185 146–159
Tc-E2F1 – – – – – – – –
Tc-IRT1 166 163 155 202 161–226 163–164 151–153 136
Tc-IRT2 238 210 – 234 212–232 218–234 231 –
Tc-WRKY 461 412 369 440 359 440 440 325
Tc-AGAMOUS 141 146 146–156 135 135–139 138 162–193 127–151
Tc-up1 111 – 126–127 – – 107 – –
Tc-up2 242 234–240 – 218–230 233 182 271–312 –
Tc-up3 195 184–195 – – 176–182 – – –
Tc-NOD 209–213 209 – – – – – –
Tc-up4 191 191–192 – 186–256 352–365 – 256–258 244–274
Tc-bHLH 149 133 135–143 134–238 110 143 143 95–105

Species code: TA Thlaspi arvense, AT Arabidopsis thaliana, AH Arabis hirsuta, BN Brassica napus, SA Sinapis arvensis, EP Erophila
praecox, CBP Capsella bursa-pastoris, BL Biscutella laevigata

m multi-band pattern, – null or weak amplification
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to be used with caution. Some limitations may result,

particularly for inbreeding or gene-flow measurements.

Furthermore, our gene makers may be used in genetic

mapping and quantitative genetic studies to investigate

in particular if some of them (e.g. Tc-ZNT1, Tc-ZNT2,

Tc-IRT1 or Tc-IRT2) colocate with QTLs for heavy-

metal hyperaccumulation and could allow marker-as-

sisted manipulation of a particular trait (e.g. Lakshmi

et al. 2005; Assunçao et al. 2006).

Cross-genera PCR amplification of loci

Overall, 70% of the cross-species/genera amplifications

were successful (Table 6). Among them, more than

40% provided polymorphic markers within a popula-

tion (Table 6). All the loci except Tc-E2F1 amplified in

T. arvense Tc-E2F1 (for which the forward primer was

developed in a nonconserved DNA region) was not

amplified in any other tested Brassicaceae apart from

T. caerulescens. Comparatively to other investigations

(e.g. Plieske and Struss 2001), our relatively high cross-

species/genera amplification of gene markers in

Brassicaceae may be related to the design of most of

primers in highly conserved sequences (particularly in

exon sequences) between distantly related species (i.e.

Thlaspi/Arabidopsis, Brassica/Arabidopsis or Alliaria/

Arabidopsis). We also observed that microsatellite loci

isolated from genomic libraries (i.e. Brassica, Alliaria

and Lepidium; Lowe et al. 2002; Durka et al. 2004; Bon

et al. 2005) frequently correspond to expressed regions

in A. thaliana (about 70% for the three cited studies).

Consequently, public microsatellite genomic libraries

can be considered as a source of variable and trans-

ferable gene markers in Brassicaceae. Cross-genera

sets of markers may allow the comparison of genetic

polymorphism between several Brassicaceae at genes

putatively involved in traits of interest, such as heavy-

metal tolerance and/or hyperaccumulation. They will

be also useful for comparative mapping studies or

population genetic analyses among and within species

in the Brassicaceae family (Clauss et al. 2002; Boivin

et al. 2004; Lowe et al. 2004).
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Kuittinen H, Aguadé M, Charlesworth D, Haan ADE, Lauga B,
Mitchell-Olds T, Oikarinen S, Ramos-Onsins S, Stranger B,
Van Tienderen P, Savolainen O (2002) Primers for 22 can-
didate genes for ecological adaptations in Brassicaceae. Mol
Ecol Notes 2:258–262

Lakshmi PK, Arumugam N, Gupta V, Mukhopadhyay A, Sodhi
YS, Pental D, Pradhan AK (2005) Mapping and tagging of
seed coat colour and the identification of microsatellite
markers for marker-assisted manipulation of the trait in
Brassica juncea. Theor Appl Genet 111:8–14

Lasat MM, Pence NS, Garvin DF, Ebbs SD, Kochian LV (2000)
Molecular physiology of zinc transport in the Zn hyperac-
cumulator Thlaspi caerulescens. J Exp Bot 51:71–79

Lombi E, Zhao FJ, Dunham SJ, McGrath SP (2000) Cadmium
accumulation in populations of Thlaspi caerulescens and
Thlaspi goesingense. New Phytol 145:11–20

Lombi E, Tearall KL, Howarth JR, Zhao FJ, Hawkesford MJ,
McGrath SP (2002) Influence of iron status on cadmium and
zinc uptake by different ecotypes of the hyperaccumulator
Thlaspi caerulescens. Plant Physiol 128:1359–1367

Lowe AJ, Jones AE, Raybould AF, Trick M, Moule CL, Ed-
wards KJ (2002) Transferability and genome specificity of a
new set of microsatellite primers among Brassica species of
the U triangle. Mol Ecol Notes 2:7–11

Lowe AJ, Moule C, Trick M, Edwards KJ (2004) Efficient large-
scale development of microsatellites for marker and map-
ping applications in Brassica crop species. Theor Appl
Genet 108:1103–1112

Lugon-Moulin N, Zhang M, Gadani F, Rossi L, Koller D, Krauss
M, Wagner GJ (2004) Critical review of the science and
options for reducing cadmium in tobacco (Nicotiana taba-
cum L.) and other plants. Adv Agron 83:111–180
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