49 research outputs found

    The MSSM with R-Party Violation

    Get PDF

    Impact of pre-treatment technologies on soil aquifer treatment

    Get PDF
    This study investigates the impact of pre-treatment options on the performances of soil columns simulating soil aquifer treatment (SAT). For this purpose a conventional activated sludge (CAS) process, a membrane bioreactor (MBR) and vertical flow reed beds were used as single units or in combination before SAT. The influent and effluent from each treatment train were monitored over three successive 6-month periods, corresponding to changes in the operational conditions of the MBR and CAS units from 6 days' sludge retention time (SRT) to 12 and 20 days. All the columns acted as efficient polishing steps for solids and bacteria. The column receiving effluent from the CAS system running at 6 days' SRT also presented high total nitrogen and total phosphorus removals, but this column was also associated with the lowest infiltration rates over that period. While the quality of the effluent from the column following the CAS process increased over 18 months of operation, the effluent quality of the columns receiving MBR effluent degraded. No correlations were found between variations in SRT of the MBR and CAS processes and the columns' performances. Overall, all columns, except the one receiving CAS effluent, underwent a reduction in infiltration rate over 18 months

    Uncovering gravitational-wave backgrounds from noises of unknown shape with LISA

    Get PDF
    Detecting stochastic background radiation of cosmological origin is an exciting possibility for current and future gravitational-wave (GW) detectors. However, distinguishing it from other stochastic processes, such as instrumental noise and astrophysical backgrounds, is challenging. It is even more delicate for the space-based GW observatory LISA since it cannot correlate its observations with other detectors, unlike today's terrestrial network. Nonetheless, with multiple measurements across the constellation and high accuracy in the noise level, detection is still possible. In the context of GW background detection, previous studies have assumed that instrumental noise has a known, possibly parameterized, spectral shape. To make our analysis robust against imperfect knowledge of the instrumental noise, we challenge this crucial assumption and assume that the single-link interferometric noises have an arbitrary and unknown spectrum. We investigate possible ways of separating instrumental and GW contributions by using realistic LISA data simulations with time-varying arms and second-generation time-delay interferometry. By fitting a generic spline model to the interferometer noise and a power-law template to the signal, we can detect GW stochastic backgrounds up to energy density levels comparable with fixed-shape models. We also demonstrate that we can probe a region of the GW background parameter space that today's detectors cannot access

    Protecting Important Sites for Biodiversity Contributes to Meeting Global Conservation Targets

    Get PDF
    Protected areas (PAs) are a cornerstone of conservation efforts and now cover nearly 13% of the world's land surface, with the world's governments committed to expand this to 17%. However, as biodiversity continues to decline, the effectiveness of PAs in reducing the extinction risk of species remains largely untested. We analyzed PA coverage and trends in species' extinction risk at globally significant sites for conserving birds (10,993 Important Bird Areas, IBAs) and highly threatened vertebrates and conifers (588 Alliance for Zero Extinction sites, AZEs) (referred to collectively hereafter as ‘important sites’). Species occurring in important sites with greater PA coverage experienced smaller increases in extinction risk over recent decades: the increase was half as large for bird species with>50% of the IBAs at which they occur completely covered by PAs, and a third lower for birds, mammals and amphibians restricted to protected AZEs (compared with unprotected or partially protected sites). Globally, half of the important sites for biodiversity conservation remain unprotected (49% of IBAs, 51% of AZEs). While PA coverage of important sites has increased over time, the proportion of PA area covering important sites, as opposed to less important land, has declined (by 0.45–1.14% annually since 1950 for IBAs and 0.79–1.49% annually for AZEs). Thus, while appropriately located PAs may slow the rate at which species are driven towards extinction, recent PA network expansion has under-represented important sites. We conclude that better targeted expansion of PA networks would help to improve biodiversity trends

    Ground deformation monitoring of the eruption offshore Mayotte

    Get PDF
    In May 2018, the Mayotte island, located in the Indian Ocean, was affected by an unprecedented seismic crisis, followed by anomalous on-land surface displacements in July 2018. Cumulatively from July 1, 2018 to December 31, 2021, the horizontal displacements were approximately 21 to 25 cm eastward, and subsidence was approximately 10 to 19 cm. The study of data recorded by the on-land GNSS network, and their modeling coupled with data from ocean bottom pressure gauges, allowed us to propose a magmatic origin of the seismic crisis with the deflation of a deep source east of Mayotte, that was confirmed in May 2019 by the discovery of a submarine eruption, 50 km offshore of Mayotte ([Feuillet et al., 2021]). Despite a non-optimal network geometry and receivers located far from the source, the GNSS data allowed following the deep dynamics of magma transfer, via the volume flow monitoring, throughout the eruption

    Shear-wave velocity structure beneath the Dinarides from the inversion of Rayleigh-wave dispersion

    Get PDF
    Highlights ‱ Rayleigh-wave phase velocity in the wider Dinarides region using the two-station method. ‱ Uppermost mantle shear-wave velocity model of the Dinarides-Adriatic Sea region. ‱ Velocity model reveals a robust high-velocity anomaly present under the whole Dinarides. ‱ High-velocity anomaly reaches depth of 160 km in the northern Dinarides to more than 200 km under southern Dinarides. ‱ New structural model incorporating delamination as one of the processes controlling the continental collision in the Dinarides. The interaction between the Adriatic microplate (Adria) and Eurasia is the main driving factor in the central Mediterranean tectonics. Their interplay has shaped the geodynamics of the whole region and formed several mountain belts including Alps, Dinarides and Apennines. Among these, Dinarides are the least investigated and little is known about the underlying geodynamic processes. There are numerous open questions about the current state of interaction between Adria and Eurasia under the Dinaric domain. One of the most interesting is the nature of lithospheric underthrusting of Adriatic plate, e.g. length of the slab or varying slab disposition along the orogen. Previous investigations have found a low-velocity zone in the uppermost mantle under the northern-central Dinarides which was interpreted as a slab gap. Conversely, several newer studies have indicated the presence of the continuous slab under the Dinarides with no trace of the low velocity zone. Thus, to investigate the Dinaric mantle structure further, we use regional-to-teleseismic surface-wave records from 98 seismic stations in the wider Dinarides region to create a 3D shear-wave velocity model. More precisely, a two-station method is used to extract Rayleigh-wave phase velocity while tomography and 1D inversion of the phase velocity are employed to map the depth dependent shear-wave velocity. Resulting velocity model reveals a robust high-velocity anomaly present under the whole Dinarides, reaching the depths of 160 km in the north to more than 200 km under southern Dinarides. These results do not agree with most of the previous investigations and show continuous underthrusting of the Adriatic lithosphere under Europe along the whole Dinaric region. The geometry of the down-going slab varies from the deeper slab in the north and south to the shallower underthrusting in the center. On-top of both north and south slabs there is a low-velocity wedge indicating lithospheric delamination which could explain the 200 km deep high-velocity body existing under the southern Dinarides

    Crustal Thinning From Orogen to Back-Arc Basin: The Structure of the Pannonian Basin Region Revealed by P-to-S Converted Seismic Waves

    Get PDF
    We present the results of P-to-S receiver function analysis to improve the 3D image of the sedimentary layer, the upper crust, and lower crust in the Pannonian Basin area. The Pannonian Basin hosts deep sedimentary depocentres superimposed on a complex basement structure and it is surrounded by mountain belts. We processed waveforms from 221 three-component broadband seismological stations. As a result of the dense station coverage, we were able to achieve so far unprecedented spatial resolution in determining the velocity structure of the crust. We applied a three-fold quality control process; the first two being applied to the observed waveforms and the third to the calculated radial receiver functions. This work is the first comprehensive receiver function study of the entire region. To prepare the inversions, we performed station-wise H-Vp/Vs grid search, as well as Common Conversion Point migration. Our main focus was then the S-wave velocity structure of the area, which we determined by the Neighborhood Algorithm inversion method at each station, where data were sub-divided into back-azimuthal bundles based on similar Ps delay times. The 1D, nonlinear inversions provided the depth of the discontinuities, shear-wave velocities and Vp/Vs ratios of each layer per bundle, and we calculated uncertainty values for each of these parameters. We then developed a 3D interpolation method based on natural neighbor interpolation to obtain the 3D crustal structure from the local inversion results. We present the sedimentary thickness map, the first Conrad depth map and an improved, detailed Moho map, as well as the first upper and lower crustal thickness maps obtained from receiver function analysis. The velocity jump across the Conrad discontinuity is estimated at less than 0.2 km/s over most of the investigated area. We also compare the new Moho map from our approach to simple grid search results and prior knowledge from other techniques. Our Moho depth map presents local variations in the investigated area: the crust-mantle boundary is at 20–26 km beneath the sedimentary basins, while it is situated deeper below the Apuseni Mountains, Transdanubian and North Hungarian Ranges (28–33 km), and it is the deepest beneath the Eastern Alps and the Southern Carpathians (40–45 km). These values reflect well the Neogene evolution of the region, such as crustal thinning of the Pannonian Basin and orogenic thickening in the neighboring mountain belts

    In Pursuit of Supersymmetry: Results from Lep 2

    No full text
    corecore