
5 THE MSSM WITH R-PARITY VIOLATION

5.1 Introduction
Marc Besançon and Werner Porod

5.1.1 Explicit R-parity violation

The Standard Model conserves baryon number B and lepton number L separately at the perturbative
level. On the contrast, its minimal supersymmetric extension does allow for the breaking of B and L if
one requires ’only’ gauge invariance and supersymmetry. The case of lepton number violation is easily
seen by noting that the Higgs superfield Ĥd and the lepton superfields L̂i have the same gauge quantum
numbers and differ only by lepton number. The most general superpotential containing only the SM
fields and being compatible with its gauge symmetry GSM = SU(3)c × SU(2)L × U(1)Y is given
as [1, 2]:

W = WMSSM +WRp/ , (5.1)

WMSSM = hijEL̂iĤdÊ
c
j + hijDQ̂iĤdD̂

c
j + hijU Q̂iĤuÛ

c
j − µĤdĤu , (5.2)

WRp/ =
1

2
λijkL̂iL̂jÊ

c
k + λ′ijkL̂iQ̂jD̂

c
k +

1

2
λ′′ijkÛ

c
i D̂

c
jD̂

c
k + εiL̂iĤu , (5.3)

i, j, k = 1, 2, 3 are generation indices. L̂i (Q̂i) are the lepton (quark) SU(2)L doublet superfields. Êcj
(D̂c

j , Û
c
j ) are the electron (down- and up-quark) SU(2)L singlet superfields. λijk, λ′ijk, and λ′′ijk are

dimensionless Yukawa couplings whereas the εi are dimensionful mass parameters. Gauge invariance
implies that the first term inWRp/ is anti-symmetric in {i, j} and the third one is anti-symmetric in {j, k}.
Equation (5.3) thus contains 9 + 27 + 9 + 3 = 48 new terms beyond those of the MSSM. Once lepton
number is broken, it is obvious from Eqs. (5.2) and (5.3) the MSSM seems to consist of three quark
superfields, five SU(2) doublet Higgs superfields and three charged SU(2) singlet Higgs superfields as
there are no means to distinguish between lepton and Higgs superfields. From this point of view, the
known charged and neutral leptons are higgsinos.

The simultaneous appearance of lepton and baryon number breaking terms leads in general to a
phenomenological catastrophe if all involved particles have masses of the order of the electroweak scale:
rapid proton decay [1,2]. To avoid this problem a discrete multiplicative symmetry, called R-parity (Rp),
had been invented [3] which can be written as

Rp = (−1)3B+L+2S , (5.4)

where S is the spin of the corresponding particle. For all superfields of MSSM, the SM field hasRp = +1
and its superpartner has Rp = −1, e.g. the electron has Rp = +1 and the selectron has Rp = −1. In this
way all terms in Eq. (5.3) are forbidden and one is left with the superpotential given in Eq. (5.2).

Recent neutrino experiments have shown that neutrinos are massive particles which mix among
themselves (for a review see e.g. [4]). In contrast to leptons and quarks, neutrinos need not to be Dirac
particles but can be Majorana particles. In the latter case the Lagrangian contains a mass term which
violates explicitly lepton number by two units. This motivates one to allow the lepton number breaking
terms in the superpotential in particular as they automatically imply the existence of massive neutrinos
without the need of introducing right-handed neutrinos [5]. The λ′′ terms can still be forbidden by a
discrete symmetry which transforms (Û c, D̂c, Q̂) into (−Û c, −D̂c, −Q̂) while leaving the other fields
unchanged. Breaking lepton number has two interesting consequences for the phenomenology of Higgs
bosons in supersymmetric theories: (i) the Higgs bosons can mix with the sleptons and (ii) Higgs cascade
decays into SUSY particles get altered.

Let us briefly comment on the number of free parameters before discussing the phenomenology
in more detail. The last term in Eq. (5.3), L̂iĤu, mixes the lepton and the Higgs superfields. In super-
symmetry L̂i and Ĥd have the same gauge and Lorentz quantum numbers and we can redefine them by
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a rotation in (Ĥd, L̂i). The terms εiL̂iĤu can then be rotated to zero in the superpotential [5]. However,
there are still the corresponding terms in the soft supersymmetry breaking Lagrangian

VRp/ ,soft = BiεiL̃iHu (5.5)

which can only be rotated away ifBi = B andM 2
Hd

= M2
L,i [5]. Such an alignment of the superpotential

terms with the soft breaking terms is not stable under the renormalization group equations [6]. Assuming
an alignment at the unification scale, the resulting effects are small [6] except for neutrino masses [6–10].
Models containing only bilinear terms do not introduce trilinear terms as can easily be seen from the fact
that bilinear terms have dimension mass whereas the trilinear are dimensionless. For this reason we will
keep in the following explicitly the bilinear terms in the superpotential.

The presence of the bilinear terms in the soft SUSY breaking potential, Eq. (5.5), implies that not
only the usual Higgs bosons get vacuum expectations values (vevs) but also the sneutrinos (for details
see [10–12]). As a consequence the neutral Higgs bosons mix with the sneutrinos resulting in five neutral
scalar bosons and four neutral pseudoscalar bosons. In addition the charged Higgs boson mixes with the
charged sleptons resulting in seven charged states, S±i (i = 1, ..7). In the following we will simplify the
notation by denoting the particles with their MSSM notation indicating their main particle content. The
complete set of the corresponding mass matrices is given in ref. [10]. The mixing between sleptons and
Higgs bosons leads to additional decay modes for the Higgs bosons [13]:

φ → νχ̃0
i , l±χ̃∓k , ν̄ν (5.6)

H+ → l+χ̃0
i , νχ̃+

k , (5.7)

where φ denotes h0, H0 and A0. Moreover, there is the possibility of associate production of Higgs
bosons together with sleptons or slepton-strahlung of t-quarks (in analogy to Higgs-strahlung) as dis-
cussed in Section 5.4. Also the sleptons have additional decay modes compared to the MSSM:

ν̃ → qq̄ , l+l− , νν̄ (5.8)

l̃ → l+ν , qq̄′ , (5.9)

e.g. the sleptons have the same signatures apart from the νν̄ channel as the usual Higgs bosons if the
R-parity violating decay modes dominate. We want to stress here again, that although we use the MSSM
symbols, Higgs bosons and sleptons mix and that the sleptons have to be considered as additional Higgs
bosons once lepton number is broken.

How large can the branching ratio for those decay modes be? To answer this question one has
to take into account existing constraints on R-parity violating parameters from low energy physics. As
most of them are given in terms of trilinear couplings, we will work in the “ε-less” basis, e.g. rotate
away the bilinear terms in the superpotential Eq. (5.3). Therefore, the trilinear couplings get additional
contributions. Assuming, without loss of generality, that the lepton and down type Yukawa couplings are
diagonal they are given to leading order in εi/µ as [14–16]:

λ′ijk → λ′ijk + δjkhdk
εi
µ

(5.10)

and

λijk → λijk + δλijk, (5.11)

δλ121 = he
ε2
µ
, δλ122 = hµ

ε1
µ
, δλ123 = 0

δλ131 = he
ε3
µ
, δλ132 = 0, δλ133 = hτ

ε1
µ

δλ231 = 0, δλ232 = hµ
ε3
µ
, δλ233 = hτ

ε2
µ
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Table 5.1: R-parity violating decays of sfermions via trilinear 6Rp operators λLiLjEck, λ′LiQjDc
k and λ′′U ciD

c
jD

c
k.

Supersymmetric Couplings
particles λ λ′ λ′′

ν̃i,L `+j,L`
−
k,R d̄j,Ldk,R

l̃−i,L ν̄j,L`
−
k,R ūj,Ldk,R

l̃−k,R νi,L`
−
j,L , `−i,Lνj,L

ũi,R d̄j,Rd̄k,R
ũj,L `+i,Ldk,R
d̃j,L ν̄i,Ldk,R
d̃k,R νi,Ldj,L, `

−
i,Luj,L ūi,Rd̄j,R

where we have used the fact that neutrino physics requires |εi/µ| � 1 [10]. An essential point to notice
is that the additional contributions in Eqs. (5.10) and (5.11) follow the hierarchy dictated by the down
quark and charged lepton masses of the standard model.

A comprehensive list of bounds on various R-parity violating parameters can be found in [17].
However, there the recent data from neutrino experiments like Super-Kamiokande [18], SNO [19] and
KamLAND [20] are not taken into account. These experiments yield strong bounds on trilinear couplings
involving the third generation [21,22]. In addition also the sneutrino vevs are constrained by neutrino data
[10,21]. Most of the trilinear couplings have a bound of the order (10−2−10−1)∗mf̃/(100GeV ) where
mf̃ is the mass of the sfermion in the process under considerations. The cases with stronger limits are:
|λ′111| <∼ O(10−4) due to neutrinoless double beta decay and |λi33| ' 5|λ′i33| ' O(10−4) due to neutrino
oscillation data. Moreover, neutrino oscillation data imply |µ2(v2

1 +v2
2 +v2

3)/det(Mχ0)| <∼ 10−12 where
vi are the sneutrino vevs and det(Mχ0) is the determinant of the MSSM neutralino mass matrix.

In particular the last constraint implies that in general there is only a small mixing between sleptons
and Higgs bosons and usually the R-parity violating decay modes of both, Higgs bosons and sleptons,
have only tiny branching ratios of the order 10−6 and below. One exception is if by chance a Higgs
boson is nearly mass degenerate with one of the sleptons which requires quite some fine-tuning. The
other exception is if all R-parity conserving decay modes are kinematically forbidden. This can occur if
either the sneutrinos or the right sleptons are the lightest supersymmetric particles (LSPs), which will be
discussed in detail in Section 5.2. The case of left-slepton LSPs is practically excluded as the sneutrinos
are always lighter provided tan β ≥ 1. In the case of sneutrino LSPs one finds the usual MSSM but
misses the ordinary sneutrinos and finds instead additional neutral states behaving nearly like neutral
doublet Higgs bosons [16,23]. The two main differences are: (i) The existence of lepton flavour violating
decays modes such as ν̃τ → e±τ∓ which are sizable. (ii) The invisible decay mode into ν̄ν, which turns
out to be small with branching ratios in the order of 10−4. In the case of charged slepton LSPs the
situation is reverse: one finds the MSSM sneutrinos but misses the right sleptons and finds instead three
additional electrically charged but SU(2) singlet Higgs bosons [24,25]. In both cases one finds that either
sneutrinos or charged sleptons have in general couplings to quarks and leptons proportional to the usual
Yukawa couplings. The main effect of additional trilinear couplings is to change the SM hierarchy of the
couplings enhancing in particular those couplings containing only first and second generation indices.

A further aspect of R-parity violation is that the LSP becomes unstable1 . This is important for the
Higgs sector if the Higgs bosons have sizable decay modes into SUSY particles. For R-parity violating
couplings larger than O(10−8 − 10−6) these decays can be observed in a typical O(10)m diameter

1As a side remark we note that it has been shown that a LSP cannot be considered as a cold dark matter candidate in the
presence of a single 6Rp coupling with value even as small asO(10−20). The only exception is the case of a light gravitino LSP
with a mass in the order of 100 eV with a life-time in the order 1075 Hubble times [27, 28].
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Table 5.2: R-parity violating decays of neutralinos and charginos with trilinear 6Rp operators λLiLjEck, λ′LiQjDc
k

and λ′′U ciD
c
jD

c
k (from [26]).

Supersymmetric Couplings
particles λijk λ′ijk λ′′ijk
χ̃o `+i ν̄j`

−
k , `

−
i νj`

+
k , `+i ūjdk , `

−
i uj d̄k, ūid̄j d̄k , uidjdk

ν̄i`
+
j `
−
k , νi`

−
j `

+
k ν̄id̄jdk , νidj d̄k

χ̃+ `+i `
+
j `
−
k , `

+
i ν̄jνk `+i d̄jdk , `

+
i ūjuk uidjuk , uiujdk

ν̄i`
+
j νk , νiνj`

+
k ν̄id̄juk , νiuj d̄k d̄id̄j d̄k

collider experiment. In the range up to O(10−5 − 10−4) for those couplings displaced vertices can be
observed. The LSP decays are important in those cases where the usual MSSM Higgs bosons have sizable
branching ratios in SUSY particles, e.g. decays like A0 → χ̃0

i χ̃
0
k. In models with conserved R-parity

such decays contain large missing momenta as part of their signatures as the LSP, usually the lightest
neutralino, escapes detection. In the case of R-parity violation several things change, e.g. all particles
can be the LSPs. Tables 5.1 and 5.2 list the R-parity violating final states induced by trilinear couplings
of all particles which have tree-level couplings to Higgs bosons. All lepton number violating final states
are also induced by sneutrino vevs. The sneutrino vevs induce additional decay modes: χ̃0

1 → W±l∓,
χ̃0

1 → Zν, χ̃0
1 → h0ν, ν̃ → νν, ν̃ → tt̄, and χ̃+

1 → W+ν. Several of the R-parity violating decay
channels do not have the usual missing energy signal. In other cases it is considerably reduced as the
neutrinos carry in average less missing energy compared to neutralinos. R-parity violation implies an
enhancement of jet and lepton multiplicities in the final states. For all these reasons decays of Higgs
bosons into SUSY particle will look completely different if R-parity is broken compared to the case
where it is conserved. Further detailed discussions of R-parity violating decays of SUSY particles can be
found in [26,29] for the case of trilinear R-parity violation and in [23,24,28,30,31] for bilinear R-parity
violation.

5.1.2 Spontaneous R-parity violation

Up to now we have only considered explicit R-parity violation keeping the particle content of the MSSM.
In the case that one enlarges the spectrum by gauge singlets one can obtain models where lepton number
and, thus, R-parity is broken spontaneously together with SU(2) ⊗ U(1) [32–36]. A second possibility
to break R-parity spontaneously is to enlarge the gauge symmetry [37].

The most general superpotential terms involving the Minimal Supersymmetric Standard Model
(MSSM) superfields in the presence of the SU(2)⊗ U(1) singlet superfields (ν̂ ci , Ŝi, Φ̂) carrying a con-
served lepton number assigned as (−1, 1, 0), respectively, is given as [38]

W = εab

(
hijU Q̂

a
i ÛjĤ

b
u + hijDQ̂

b
iD̂jĤ

a
d + hijEL̂

b
iÊjĤ

a
d + hijν L̂

a
i ν̂

c
jĤ

b
u− µ̂Ĥa

d Ĥ
b
u− h0Ĥ

a
d Ĥ

b
uΦ̂
)

+ hijΦ̂ν̂ci Ŝj +M ij
R ν̂

c
i Ŝj +

1

2
MΦΦ̂2 +

λ

3!
Φ̂3 (5.12)

The first three terms together with the µ̂ term define the R-parity conserving MSSM, the terms in the
second line only involve the SU(2) ⊗ U(1) singlet superfields (ν̂ ci , Ŝi, Φ̂), while the remaining terms
couple the singlets to the MSSM fields. For completeness we note, that lepton number is fixed via the
Dirac-Yukawa hν connecting the right-handed neutrino superfields to the lepton doublet superfields. For
simplicity we assume in the discussion below that only one generation of (ν̂ ci , Ŝi) is present.

The presence of singlets in the model is essential in order to drive the spontaneous violation of
R-parity and electroweak symmetries in a phenomenologically consistent way. As in the case of explicit
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R-parity violation all sneutrinos obtain a vev beside the Higgs bosons as well as the S̃ field and the singlet
field Φ. For completeness we want to note that in the limit, that all sneutrino vevs vanish and all singlets
carrying lepton number are very heavy one obtains the NMSSM as an effective theory. The spontaneous
breaking of R-parity also entails the spontaneous violation of total lepton number. This implies that
one of the neutral CP–odd scalars, which we call majoron J and which is approximately given by the
imaginary part of ∑

i v
2
i

V v2
(vuH

0
u − vdH0

d) +
∑

i

vi
V
ν̃i +

vS
V
S − vR

V
ν̃c (5.13)

remains massless, as it is the Nambu-Goldstone boson associated to the breaking of lepton number. vR
and vS are the vevs of ν̃c and S̃, respectively and V =

√
v2
R + v2

S . Clearly, the presence of these
additional singlets enhances further the number of neutral scalar and pseudoscalar bosons. Explicit
formulas for the mass matrices of scalar and pseudoscalar bosons can be found e.g. in [39].

The presence of the singlet fields implies in many respects similar features to the addition of
the singlet Higgs in the NMSSM, see Section 4, e.g. the Higgs bosons have reduced couplings to the
Z-boson:

LZZH =
8∑

i=1

(
√

2GF )1/2M2
ZZµZ

µ ηiH
0
i . (5.14)

In the basis (Re(H0
1 ), Re(H0

2 ), Re(ν̃i), Re(ν̃c), Re(S),Re(Φ)), the ηi read as:

ηi =
vd
v
RS

0

i1 +
vu
v
RS

0

i2 +
3∑

j=1

vj
v
RS

0

ij+2 (5.15)

where RS
0

is the 8 × 8 mixing matrix of the neutral scalars. As a consequence the production cross
section e+e− → H0

i Z can be reduced compared to the MSSM implying that one gets weaker bounds
from the LEP data. Another feature similar to the NMSSM is that there is an upper bound on the mainly
doublet Higgs boson of 150 GeV. Further details are discussed in Section 5.3.

The case of an enlarged gauge symmetry can be obtained for example in left-right symmetric
models, e.g. with the gauge group SU(2)L × SU(2)R × U(1)B−L [37]. Additional details on extra
gauge groups can be found in Section 6. The corresponding superpotential is given by:

W = hφQQ̂
T
Liτ2φ̂Q̂

c
R + hχQQ̂

T
Liτ2χ̂Q̂

c
R

+hφLL̂
T
Liτ2φ̂L̂

c
R + hχLL̂

T
L îτ2χ̂L̂

c
R + h∆L̂

cT
R iτ2∆̂L̂cR

+µ1Tr(iτ2φ̂
T iτ2χ̂) + µ2Tr(∆̂δ̂), (5.16)

where the Higgs sector consists of two triplet and two bi-doublet Higgs superfields with the following
SU(2)L × SU(2)R × U(1)B−L quantum numbers:

∆̂ =

(
∆̂−/
√

2 ∆̂0

∆̂−− −∆̂−/
√

2

)
∼ (1,3,− 2),

δ̂ =

(
δ̂+/
√

2 δ̂++

δ̂0 −δ̂+/
√

2

)
∼ (1,3,2),

φ̂ =

(
φ̂0

1 φ̂+
1

φ̂−2 φ̂0
2

)
∼ (2,2,0), χ̂ =

(
χ̂0

1 χ̂+
1

χ̂−2 χ̂0
2

)
∼ (2,2,0). (5.17)

In the fermion sector the ‘right-handed’ matter superfields are combined to SU(2)R doublets which
requires the existence of right-handed neutrinos. The corresponding superfields are denoted by Q̂cR and
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L̂cR for quark and lepton superfield respectively. Also in this case all neutral components of the Higgs
fields and all sneutrinos get vevs. However, the majoron now becomes the longitudinal component of the
extra Z ′ gauge boson.

Looking at the decays of the Higgs bosons, one has to distinguish two scenarios: (i) Lepton number
is gauged and, thus, the majoron becomes the longitudinal part of an additional neutral gauge boson.
(ii) The majoron remains a physical particle in the spectrum. In the first case one has a situation similar
to the case of explicit R-parity violation augmented with the possibilities of the NMSSM. There are for
example regions in the parameter space where the scalar Higgs, which is mainly a doublet, decays into
two pseudoscalar singlet Higgs bosons yielding e.g.

H0
1 → A0

1A
0
1 → bb̄bb̄ . (5.18)

In the case of the enlarged gauge group there are additional doubly charged Higgs bosons H−−i which
have lepton number violating couplings. In e−e− collisions they can be produced according to

e−e− → H−−i (5.19)

and have decays of the type

H−−i → H−j H
−
k (5.20)

H−−i → l−j l
−
k (5.21)

where l denotes e, µ and τ . Further details on the phenomenology of doubly charged Higgs bosons can
be found in Section 13.

The second case, where the majoron is part of the spectrum, leads to additional decay modes of
the Higgs bosons. For example, the scalar Higgs bosons can decay according to

H0
i → A0

j J (5.22)

H0
i → J J (5.23)

Note, that the later one is completely invisible. It has been shown that there is a sizable region in
parameter space with a light scalar Higgs boson which is mainly a doublet and which decays mainly into
the invisible mode above [38, 39]. The existence of the majoron leads also to new decay modes of the
pseudoscalar Higgs bosons:

A0
i → H0

j J (5.24)

A0
i → J J J . (5.25)

The later one is also completely invisible. However, either the production of the decaying pseudoscalar
boson or the branching ratio into the invisible state are quite suppressed as discussed in Section 5.3.
Therefore, this mode is phenomenologically less important than the decay H 0

i → J J .

For the decays of supersymmetric particles the same general statements hold as for the Higgs
bosons. In case (i) from above, the phenomenology is similar to the case of explicit R-parity breaking.
The main difference is the existence of additional singlet neutralinos and/or gauginos which can be
produced in the various cascade decays. In the case that all these singlet states turn out to be much
heavier than the MSSM states one ends up with the bilinear model of R-parity breaking. In the case that
the majoron is present, charginos and neutralinos have additional decay modes:

χ̃+
i → J l+ (5.26)

χ̃0
j → J ν . (5.27)

The latter one is completely invisible. In the case that it dominates one recovers the usual missing energy
of the MSSM although R-parity is broken. Further details on the phenomenology of SUSY particles in
models with spontaneously broken R-parity can be found e.g. in [40, 41].
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5.1.3 Constraints from colliders

A brief summary of the constraints on R-parity violation couplings from low energy effects has been
given in Section 5.1.1 and we refer the reader to [26] for a more detailed review. In the following we focus
on direct searches at colliders in models with broken R-parity, which have been carried by HERA, LEP
and Tevatron collaborations over the past decade. The pair production of supersymmetric particles with
the usual R-parity conserving supersymmetric couplings followed by direct or indirect decays involving
R-parity violating couplings as well as singly produced supersymmetric particles involving directly the
R-parity violating couplings (followed again by direct or indirect decays) have been extensively searched
for. No evidence for supersymmetry with R-parity violation have been found at those colliders.

Constraints have been set on the masses of supersymmetric particles produced in pair where it
has been assumed that the effect of the R-parity violating couplings is only important in the decays. An
example for these constraints is shown in Table 5.3 for pair produced sfermions at LEP from [42–45]. In
the case of the lower limits on the mass of ẽR and ν̃e the Aleph collaboration assumes µ = −200 GeV
and tan β = 2. For the lower limits for indirect decays m l̃,ν̃ −mχ̃ > 10 GeV is assumed for the λ′′ijk
couplings. The lower limit on the t̃L mass (for direct decay) is obtained assuming BR(t̃L → qτ) = 1.
The Delphi collaboration takes µ = −200 GeV, tanβ = 1.5 and mf̃ − mχ̃0

1
≥ 5 GeV. They also

assume the lower mass limit on the lightest neutralino. The t̃1 and b̃1 limits from L3 are derived for a
squark mixing angle minimizing the cross-section. The Opal collaboration take mχ̃0

1
= 10 GeV to derive

the lower limits on charged sleptons and refer to l̃R (l̃L) for the indirect (direct) decays. In case of the
sneutrinos (indirect decays) mχ̃0

1
is set to 60 GeV. The limit on t̃L assumes i = 3 (for i = 1, 2 this limit

rises to 100 GeV). Moreover, for large sfermion masses an absolute limit of 103 GeV has been set on
the chargino mass by the Aleph collaboration [42], irrespective of the R-parity violating coupling. The
Delphi collaboration [43] has set a lower limit of 39.5 GeV (103 GeV) formχ̃0

1
(mχ̃+

1
) for λijk couplings.

For λ′′ijk these lower limits are 38.0 GeV and 102.5 GeV, respectively

Squark pair production and gluino pair production have been considered by CDF and D0. For
example, a lower limit on the stop mass of 122 GeV has been set assuming BR( t̃1 → bτ) = 1 [46].
The CDF collaboration [47] considered the processes pp̄ → g̃g̃ → cc̃cc̃ → c(e±d)c(e±d) and pp̄ →
d̃ ˜̄q → qχ̃0

1q̄χ̃
0
1 → q(ce±d)q̄(ce±d) taking only λ′121 to be non-zero. This resulted into the constraint

σ×B > 0.18 pb for the c̃ search and into lower limits on squark masses i.e. 260 GeV for mass degenerate
squarks and 135 GeV for t̃1 assuming mg̃ = 200 GeV and a heavy χ̃0

1. The D0 collaboration [48]
considered gluino and squark cascade decay till the lightest neutralino and then lightest neutralino decay
via λ′2jk with j = 1, 2 and k = 1, 2, 3. They obtained a lower limit on squark masses of 240 GeV
independent ofmg̃ and a lower limit onmg̃ of 224 GeV for all squark masses. In the case ofmg̃ = mtildeq

a lower limit of 265 GeV has been obtained. In all cases tanβ = 2,A0 = 0 and µ < 0 has been assumed.
The D0 collaboration [49] has also searched for gauginos pair production followed by decays mediated
by the λ121 and λ122 couplings which allows one to exclude a large region of the parameter space for
coupling values of the order of 10−4.

R-parity violation allows for the possibility of singly produced supersymmetric particles. For ex-
ample the Delphi collaboration [50] has searched for resonant sneutrino production and decay involving
the λ121 and λ131 couplings. The obtained constrained on these couplings are in the order of 2-3 ·10−3

for 180 GeV ≤ mν̃ ≤ 208 GeV. The e±p HERA collider is ideally suited to the search for single squark
production involving λ′ couplings. For example the H1 collaboration [51,52] (see also [53]) has excluded
large regions of the planes (λ′1j1, mq̃) for j=1,2,3, e.g. λ′1j1 <∼ 10−2 for mq̃ <∼ 200 GeV, |µ| ≤ 300 GeV,
70 GeV ≤ M2 ≤ 350 and tanβ = 6. The CDF collaboration [54] has searched for single sneutrino
production and direct decays via λ′ leading to eµ (respectively eτ and τµ) final states which resulted
into the lower limits σ × B > 0.14 pb (respectively 1.2 pb and 1.9 pb). The D0 collaboration [55] has
searched for resonant smuon and muon sneutrino single production via λ′211 and has put lower limits of
280 GeV on the corresponding masses.
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Table 5.3: Lower limits at the 95% confidence level on the masses of sleptons (unit GeV) from LEP assuming
pair production followed by direct or indirect decay involving the R-parity violating couplings λijk , λ′ijk and λ′′ijk
from [42–45]. The acronyms A, D, L and O indicate respectively the Aleph, Delphi, L3 and Opal collaborations.
Details on the various assumptions are given in the text.

λijk λ′ijk λ′′ijk
direct indirect direct indirect direct indirect

ẽ A (ẽR) 96.0 96.0 93.0 94.0
D (ẽR) 95.0 92.0
L (ẽR) 69.0 79.0 96.0
O 89.0 99.0 89.0 92.0

µ̃ A (µ̃R) 87.0 96.0 81.0 (µ̃L) 90.0 85.0
D (µ̃R) 90.0 87.0
L (µ̃R) 61.0 87.0 86.0
O 74.0 94.0 75.0 87.0

τ̃ A (τ̃R) 87.0 95.0 76.0 70.0
D (τ̃R) 90.0
L (τ̃R) 61.0 86.0 75.0
O 74.0 92.0 75.0

ν̃e A 100.0 98.0 91.0 88.0
D 96.0 98.0
L 95.0 99.0 99
O 89.0 95.0 89.0 88.0

ν̃µ A 90.0 89.0 79.0 78.0 65.0
D 83.0 85.0
L 65.0 78.0 70.0
O 79.0 81.0 74.0

ν̃τ A 89.0 78.0 65.0
D 91.0 85.0
L 65.0 78.0 70.0
O 79.0 81.0 74.0

ũL (u-type) A 82.5
L 87.0 87.0

d̃L (d-type) A 77.0
L 86.0 86.0

t̃ A (t̃L) 91.0 97.0 85.0 71.5
D (t̃L) 92.0 87.0
L (t̃1) 77.0 77.0
O (t̃L) 98.0 88.0

b̃ A (b̃L) 90.0 80.0 71.5
D (b̃L) 78.0
L (b̃1) 55.0 48.0

252

WORKSHOP ONCP STUDIES AND NON-STANDARD HIGGS PHYSICS

252



5.2 The Higgs sector in models with explicitly broken R-parity
Martin Hirsch and Werner Porod

The down-type Higgs field Ĥd and the left slepton L̂i fields of the MSSM carry the same SU(3) ×
SUL(2) × UY (1) quantum numbers. In models with conserved R-parity they can only be distinguished
by lepton number. Therefore, in models where lepton number and, thus, R-parity is broken these fields
are not distinguishable and the MSSM appears to consist of five Higgs doublets and three electrically
charged but SUL(2) singlet Higgs fields.

The breaking of R-parity can be realized by introducing explicit R-parity breaking terms [5] or by
a spontaneous break-down of lepton number [35]. The first class of models can be obtained in mSUGRA
scenarios where depending on the choice of discrete symmetries various combinations of R-parity vi-
olating parameters are present at the GUT or Planck scale [14]. The latter class of models leads after
electroweak symmetry breaking to effective terms, the so-called bilinear terms, which are a sub-class of
the terms present in the models with explicit R-parity breaking. These bilinear terms have an interesting
feature: They do not introduce trilinear terms when evolved from one scale to another with renormaliza-
tion group equations (RGEs). In contrast, trilinear terms do generate bilinear terms when evolved from
one scale to another.

From the point of view of Higgs physics these bilinear terms have the interesting feature that they
lead to a mixing between the usual Higgs fields and sleptons, more precisely the charged Higgs boson
mixes with the charged sleptons, the real part of the sneutrinos with the neutral scalar Higgs bosons and
the imaginary part of the sneutrinos with the pseudoscalar Higgs boson. Therefore we will concentrate on
the effect of bilinear R-parity breaking terms and comment on the case of additional tri-linear couplings
at the end of this contribution. The model is specified by the following superpotential W and soft SUSY
breaking Lagrangian Vsoft:

W = WMSSM + εiL̂iĤu (5.28)

Vsoft = Vsoft,MSSM +BiεiL̃iHu (5.29)

where WMSSM and Vsoft,MSSM contain the usual MSSM terms. The Bi induce vevs vi for the sneu-
trinos which, however, are not independent quantities. In the following we will trade them against the
Bi and take the vi as free parameters. In the discussion below we will work in the ‘ε-less’ basis pre-
sented in Section 5.1.1. In this basis effective trilinear couplings of the form λijk = (εi/µ) · hjEδjk and
λ′ijk = (εi/µ) · hjDδjk are present, see Eqs. (5.10) and (5.11).

The R-parity violating parameters are constrained due to data from rare decays of leptons and
mesons and other low-energy data. As discussed in Section 5.1.1 the most important ones for this model
arise from the observed neutrino data implying that |εi/µ| ' O(10−3) − O(10−2) and v/M2 ' 10−6

where v =
√
v2

1 + v2
2 + v2

3 . The smallness of these couplings imply that the mixing between sleptons
and Higgs fields is in general small. The largest effects are observable if either the right-sleptons or
the sneutrinos are the lightest supersymmetric particles (the left-sleptons are in general heavier than the
sneutrinos). In the following we will discuss these two cases. Although lepton number is not defined
anymore in this class of models we will nevertheless use the MSSM notation for simplicity.

5.2.1 The charged scalars

In this section we will discuss the case that the right-sleptons are the LSPs. From the experimental point
of view they appear to be charged Higgs bosons decaying mainly into leptons:

l̃R → eν, µν, τν (l = e, µ, τ) (5.30)

where ν denotes the sum over all neutrinos. Decays into quarks are suppressed by the corresponding
left-right mixings and only in case of the right stau one can expect a sizable branching ratios for quark
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Fig. 5.1: Charged slepton decay length as a function of ml̃ at a linear collider with 0.8 TeV c.m.s. energy. From
top to bottom: ẽ (dark, blue), µ̃ (light shaded, green) and τ̃ (medium gray, red).

final states if tan β is sufficiently large.

Before discussing the decays in some detail, let us briefly comment on slepton production at future
collider experiments. Due to the smallness of the R-parity violating couplings the production of super-
symmetric particles is MSSM like. Therefore, at the LHC the direct production of right–sleptons is small,
e.g. about 110 (20) fb if ml̃ ' 100(200) GeV [56]. As a result, they will be produced mainly in cascade
decays. The relative ẽR, µ̃R and τ̃R yields will depend on the details of the cascade decays involved. In
the cascade decays of squarks and the gluino several neutralinos and charginos will be produced. The
gaugino like states will decay into an equal number of ẽR, µ̃R and τ̃R except for kinematics. In partic-
ular the bino-like neutralino is expected to have a large branching ratio into l̃R as these are the particles
with the biggest hypercharge. In the case of higgsino like states the corresponding branching ratios are
proportional to the corresponding Yukawa coupling squared. At a future international linear collider the
sleptons can be directly produced in e+e− annihilation: e+e− → l̃−l̃+. Typical cross sections are of the
order of a 100 fb (10 fb) for ẽ (µ̃ and τ̃ ).

All three sleptons can decay into all charged leptons as can be seen from Eq. (5.30) and, thus,
the question arises if there are any means to distinguish them. It turns out that different generations
of sleptons have quite different life times as discussed in detail in Ref. [24]. In Fig. 5.1 we show the
charged slepton decay lengths (ẽ, µ̃ and τ̃ , from top to bottom) as a function of the scalar lepton masses
performing a scan of the parameter space: 0 ≤ M2 ≤ 1.2 TeV, 0 ≤ |µ| ≤ 2.5 TeV, 0 ≤ m0 ≤ 0.5 TeV,
−3 ≤ A0/m0, B0/m0 ≤ 3 and 2.5 ≤ tan β ≤ 10. The R-parity violating parameters are chosen in such
a way [10] that the neutrino masses and mixing angles are approximately consistent with the experimental
data as described in detail in [24]. As can be seen, all decay lengths are small compared to typical detector
sizes, despite the smallness of the neutrino masses. The three generations of sleptons decay with quite
different decay lengths and thus it should be possible to separate the different generations experimentally
at a future linear collider. Note that the ratio of the decay lengths L(τ̃)/L(µ̃) is approximately given by
(hµ/hτ )2 which can easily be understood from Eq. (5.11).

From Eq. (5.11) one expects that ratios of the branching ratios of the ’flavour’ violating decay
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Fig. 5.2: Ratios of branching ratios for (a) selectrons decays versus (ε2/ε3)2, (b) smuon decays versus (ε1/ε3)2

and (c) stau decays versus (ε1/ε2)2 scanning over the SUSY parameter space. Here ν is the sum over all neutrinos.
From [24].

modes should be proportional to ratios of εi squared:

BR(l̃i → lj
∑

r νr)

BR(l̃i → lk
∑

r νr)
'
ε2j
ε2k

(5.31)

with l1 = e, l2 = µ, l3 = τ and i 6= j 6= k. Moreover, this feature should remain valid after taking into
account all the mixing effects between SM particles and supersymmetric particles as has been shown in
[24] semi-analytically. That this is indeed the case is shown in Fig. 5.2. As can be seen from these figures,
the ratio of charged slepton branching ratios are correlated with the ratios of the corresponding BRpV
parameters εi, following very closely the expectation from Eq. (5.31), nearly insensitive to variation of
the other parameters. Recall, that all the points were generated through a rather generous scan over the
MSSM parameters. Ratios of εi’s should therefore be very precisely measurable. Moreover, since only
two of the three ratios of εi’s are independent it is possible to derive the following prediction:

BR(τ̃1 → e
∑
νi)/BR(τ̃1 → µ

∑
νi)

BR(µ̃1 → e
∑
νi)/BR(µ̃1 → τ

∑
νi)
' BR(ẽ1 → µ

∑
νi)

BR(ẽ1 → τ
∑
νi)

(5.32)

which provides an important cross check of the validity of the bilinear R-parity model. Any significant
departure from this equality would be a clear sign that the bilinear model is incomplete. In the parameter
ranges compatible with neutrino data, it turns out that the branching ratios of ’flavour diagonal’ decay
modes hardly vary with the underlying parameters: BR(τ̃ → τ

∑
i νi) ' BR(µ̃ → µ

∑
i νi) ' 0.5.

The variations are of the order of 1%. The selectrons behave differently due to the smallness of lepton
Yukawa coupling yielding that 0.96 <∼ BR(ẽR → e

∑
i νi) <∼ 0.999.

5.2.2 The neutral scalars

In this section we will discuss the scenario where the sneutrinos are the LSPs. The occurrence of sneu-
trino vevs implies in principle a splitting between real and imaginary parts of the sneutrino in analogy to
the neutral Higgs sector (see e.g. [10] for the corresponding mass formulas). However, as a consequence
of the smallness of the R-parity violating parameters this splitting is well below the expected accuracy of
future collider experiments. Moreover, for the same reason R-parity violating production processes like
e+e− → ZRe(ν̃) have tiny cross sections in the order of 10−5 fb and the branching ratios of charginos
and neutralinos into the real and imaginary parts of the sneutrinos occur with practically the same prob-
ability, e.g. 1 − BR(χ̃ → Re(ν̃))/BR(χ̃ → Im(ν̃)) ' 10−5. For these reasons we will speak of ’the’
sneutrino instead of making the distinction between scalar and pseudoscalar particles.
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Fig. 5.3: Ratio of branching ratios BR(ν̃τ → eτ)/BR(ν̃τ → µτ) versus a) (ε1/ε2)2 and b) tan2 θ�. From
Ref. [16].

In this scenario the trilinear couplings of the sneutrinos to down quarks and charged leptons follow
a hierarchy dictated by the standard model quark and charged lepton masses, see Eqs. (5.10) and (5.11).
One expects therefore that the most important final state for sneutrinos is bb̄, independent of the sneutrino
generation. Electron and muon sneutrinos will decay also to τ τ̄ final states with a relative ratio of

BR(ν̃e,µ → τ τ̄)

BR(ν̃e,µ → bb̄)
' h2

τ

3h2
b (1 + ∆QCD)

(5.33)

independent of all other parameters. Here ∆QCD are the QCD radiative corrections. Decays to µµ̄ (and
non-b jets) final states are suppressed by the corresponding Yukawa couplings squared. From this point
of view they behave as a pure down-type Higgs boson of the MSSM. The two main differences are the
occurrence of the invisible decay mode νν and a small decay width implying a finite decay length as
discussed below.

Tau sneutrinos, on the other hand, will decay to final states eτ and µτ with sizable branching ratios

BR(ν̃τ → eτ)[BR(ν̃τ → µτ)]

BR(ν̃τ → bb̄)
' h2

τ

3h2
b (1 + ∆QCD)

ε21[ε22]

ε23
(5.34)

The above relation allows one to cross check the consistency of the bilinear scenario with neutrino data,
as demonstrated in Fig. 5.3. The current 3σ allowed range for the solar neutrino mixing angle θ� of
0.30 ≤ tan2 θ� ≤ 0.59 fixes BR(ν̃τ → eτ)/BR(ν̃τ → µτ) to be in the range from about 0.55 to about
1.25, as can be seen in Fig. 5.3.

Non-zero sneutrino vevs induce the decay ν̃ → νν, i.e. by measuring non-zero branching ratios for
invisible decays one could establish that sneutrino vevs exist. From the estimate on v

M2
and ε

µ discussed
above one can estimate that branching ratios of sneutrino decays to invisible states should be of the order
O(10−4). Figure 5.4a shows the calculated branching ratios for invisible final states, BR(ν̃i →

∑
νjνk),

as a function of the sneutrino mass. The figure shows that the estimate discussed above is correct within
an order of magnitude. It also demonstrates that for sneutrinos below m ν̃ ≤ 500 GeV one expects
BR(ν̃i →

∑
νjνk) ≥ 10−5 a few events of the form e+e− → ν̃ν̃ → bb̄νν are expected per year at a

future international linear collider with a center of mass energy of 1 TeV.

To measure absolute values of R-parity violating parameters it would be necessary to measure the
decay widths of the sneutrinos. Given the current neutrino data, however, such a measurement seems
to be very difficult for the next generation of colliders. Figure 5.4b shows calculated decay lengths,
assuming a center of mass energy of

√
s = 1 TeV, versus sneutrino mass. The decay lengths are short

compared to sensitivities expected at a future linear collider which are of order 10 µm [57]. One can turn
this argument around to conclude that observing decay lengths much larger than those shown in Fig. 5.4
would rule out explicit R-parity violation as the dominant source of neutrino mass.

256

WORKSHOP ONCP STUDIES AND NON-STANDARD HIGGS PHYSICS

256



100 200 300 400 500
10-5

10-4

10-3

100 200 300 400 500
10-3

10-2

10-1

100

101
B

r
(ν̃

i
→

∑
ν

j
ν

k
)

mν̃ [GeV]

L
(ν̃

i
)

[µ
m

]

mν̃ [GeV]

(a) (b)

Fig. 5.4: (a) Invisible sneutrino decay branching ratio versus sneutrino mass and (b) sneutrino decay length versus
sneutrino mass. Light (medium, dark) points (green, red, blue) are for ν̃e (ν̃µ, ν̃τ ).

5.2.3 Summary and comments

We have discussed in some detail the Higgs sector in models where R-parity is broken by bilinear terms.
In this class of models the Higgs bosons mix with the slepton fields. However, the bounds on the R-
parity violating parameters due to requirement of correctly explaining the observed neutrino data imply
that large effects occur mainly if one of the following requirements on the SUSY spectrum is fulfilled.

The first possibility is that the right sleptons are the LSPs. In this case their signature is that
of three electrically charged but SUL(2) singlet Higgs bosons decaying into all generations of charged
leptons. Decays into quarks are in general suppressed. An important property of these charged Higgs
bosons is that their life time is quite different and that at least two of them should have a visible decay
length at future collider experiments, see e.g. Fig. 5.1.

The second possibility is that the sneutrinos are the LSPs. In this case their signatures are close to
those expected for the down-type Higgs boson of the MSSM. The main differences are: (i) the occurrence
of the invisible mode νν, (ii) small decay widths resulting in decay lengths of the order µm and (iii) that
one of them has sizable lepton flavour violating decay modes into eτ and µτ .

Let us finally comment on the occurrence of additional trilinear couplings λijk and λ′ijk. Their
main effects are: (i) The hierarchy of the branching ratios discussed above will be distorted in general. (ii)
They can give rise to significantly larger decay widths, in particular if their structure is anti-hierarchical
compared to the usual lepton Yukawa couplings. (iii) The invisible decay mode gets tiny. Corresponding
scenarios are discussed e.g. in Refs. [16, 25].

5.3 Phenomenology of the neutral Higgs sector in a model with spontaneously broken R-parity

Albert Villanova del Moral

Current neutrino data can be explained in the framework of the Spontaneously Broken R-Parity Model
(SBRPM). This model contains a massless Nambu-Goldstone boson associated to spontaneous lepton
number violation called majoron which opens additional invisible decay channels for Higgs bosons. We
analyze the full neutral Higgs boson sector of the model and demonstrate that there is always a neutral
CP-even Higgs boson, whose mass is bounded from above as in the Minimal Supersymmetric Standard
Model, which is copiously produced. Moreover we show that its invisible decay mode to two majorons
can be dominant in some regions of parameter space. We also study the associated channel where a
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neutral CP-odd Higgs boson is produced together with a neutral CP-even one. We show how the lightest
CP-odd Higgs boson can have a sizable production cross section and decay to a neutral CP-even Higgs
boson and a majoron.

5.3.1 The model

The superpotential of this model is given in Eq. (5.12). Note, that if only trilinear terms are non-zero in
the superpotential, this specific realization of the SBRPM would solve the µ-problem in the same way as
the Next to Minimal Supersymmetric Standard Model (NMSSM) [58, 59].

Considering only one generation of the superfields (ν̂ ci , Ŝi) for simplicity, the scalar potential for
the electrically neutral fields reads

Vtotal = |hΦS̃ + hiν ν̃iH
0
u +MRS̃|2 + |h0ΦH0

u + µ̂H0
u|2 + |hΦν̃c +MRν̃c|2

+ | − h0ΦH0
d − µ̂H0

d + hiν ν̃iν̃
c|2 + | − h0H

0
uH

0
d + hν̃cS̃ − δ2 +MΦΦ +

λ

2
Φ2|2

+
3∑

i=1

|hiν ν̃cH0
u|2 +

[
AhhΦν̃cS̃ −Ah0h0ΦH0

uH
0
d +Ahνh

i
ν ν̃iH

0
uν̃

c −Bµ̂H0
uH

0
d

− Cδδ2Φ +BMR
MRν̃cS̃ +

1

2
BMΦ

MΦΦ2 +
1

3!
AλλΦ3 + h.c.

]

+
∑

α

m̃2
α|zα|2 +

1

8
(g2 + g′2)

(
|H0

u|2 − |H0
d |2 −

3∑

i=1

|ν̃i|2
)2
,

(5.35)

where zα denotes any neutral scalar of the model.

As usual, electroweak symmetry is broken by the isodoublet nonzero vacuum expectation values
(vevs)

〈
H0
u

〉
=

vu√
2
,

〈
H0
d

〉
=

vd√
2
. (5.36)

R-parity is broken by the lepton-number-carrying isosinglet vevs

〈S̃〉 =
vS√

2
, 〈ν̃c〉 =

vR√
2
. (5.37)

as well as by the (tiny) left sneutrino vevs

〈ν̃Li〉 =
vi√

2
. (5.38)

Last but not least, another important vev which is the key ingredient to generate an effective µ-term (and
so, solving the µ-problem), is

〈Φ〉 =
vΦ√

2
. (5.39)

5.3.2 Neutral Higgs boson masses

The neutral Higgs boson sector of the SBRPM consists of eight CP-even states H 0
i , six CP-odd states

A0
i and one massless majoron J (as the electroweak Goldstone boson G0 is eaten by the Z). The 8 × 8

mass matrices for the neutral CP-even and CP-odd Higgs bosons (given in ref. [39]) can be analytically
understood in certain limits [60]. First of all, we note that doublet sneutrinos practically do not mix with
the rest of the Higgs bosons, as the corresponding entries in the mass matrices are proportional to h iν and
these parameters are small because of neutrino physics phenomenology. If there were also no mixing
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parameter

√
Γ. The main flavour component of each mass eigenstate is identified by means of each colour, as

described in the text. From ref. [60].

between the (H0
d , H

0
u) doublet sector, the Φ̃ singlet sector and the (S̃, ν̃c) singlet sector2, we would have

as CP-odd mass eigenstates

m2
G0 = 0 , m2

A0
D

= Ω

(
vu
vd

+
vd
vu

)
(5.40)

in the (H0
d , H

0
u) doublet sector and

m2
J = 0 , m2

A0
S

= −Γ

(
vR
vS

+
vS
vR

)
(5.41)

in the (S̃, ν̃c) singlet sector, with

Ω = Bµ̂− δ2h0 +
λ

4
h0v

2
Φ +

1

2
hh0vRvS +

√
2

2
Ah0h0vΦ +

√
2

2
h0MΦvΦ (5.42)

Γ = BMR
MR − δ2h+

1

4
hλv2

Φ −
1

2
hh0vuvd +

√
2

2
h (Ah +MΦ) vΦ . (5.43)

In addition we would have as CP-even mass eigenstates

m2
H0
J

= 2h2 v2
Rv

2
S

v2
R + v2

S

, m2
H0
S

= −Γ

(
vR
vS

+
vS
vR

)
− 2h2 v2

Rv
2
S

v2
R + v2

S

(5.44)

in the (S̃, ν̃c) singlet sector, besides the states h0
D and H0

D in the (H0
d , H

0
u) doublet sector, which are

analogous to their MSSM counterparts. In Fig. 5.5 a typical scanned Higgs mass spectrum is plotted as a
function of the parameter

√
Γ and we can identify the A0

S and H0
S states as those which depend on

√
Γ.

The various gray-shadings (colors) indicate that the asymptotic states given in Eqs. (5.40), (5.41) and
(5.44) constitute more the 50% of the corresponding particle.

Taking into account the phenomenological relation vi � vR, vS we find the following approxima-
tion for the majoron

J ' vS
V

Im(S̃)− vR
V

Im(ν̃c) (5.45)

where
V 2 = v2

S + v2
R . (5.46)

2This assumption is not strictly valid, as some of their mixings are not negligible, but it is useful to gain some insight on the
parameter dependence of the eigenvalues.
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Fig. 5.6: Neutral Higgs boson production processes in an e+e− collider. On the left, we can see the direct produc-
tion or Bjorken process. On the right, we can see the associated production process.

5.3.3 Higgs boson production

Neutral Higgs bosons can be produced at an e+e− collider via the Bjorken process (or direct production),
as shown in Fig. 5.6, on the left. The relevant Lagrangian terms for this production mode are

LZZH =

8∑

i=1

(
√

2GF )1/2M2
ZZµZ

µ ηiH
0
i (5.47)

where ηi is the direct production parameter given by

ηi =
vd
v
RS

0

i1 +
vu
v
RS

0

i2 +

3∑

j=1

vj
v
RS

0

ij+2 (5.48)

We note that if η2
i is nearly one (zero), then H0

i is mainly a doublet (singlet).

From Fig. 5.7, on the left, we can see that when the direct production parameter η2
1 of the lightest

CP-even Higgs boson H0
1 is nearly zero, then the direct production parameter η2

2 of the next-to-lightest
Higgs boson H0

2 approaches one, i.e. H0
2 is largely produced. From Fig. 5.7, on the right, we can see

that there is always a state with a mass smaller than about 150 GeV. Combining both plots, we conclude
that there is always a light Higgs boson with a large production cross section [60].

Another way of producing neutral Higgs bosons is via the associated production process shown in
Fig. 5.6 on the right. The relevant Lagrangian terms for this production mechanism are

LZHA =

8∑

i,j=1

(
√

2GF )1/2MZ ζij

(
ZµH0

i

←→
∂µP

0
j

)
(5.49)

where ζij is the associated production parameter, which is given by

ζij = RS
0

i1 R
P 0

j1 −RS
0

i2 R
P 0

j2 +

3∑

k=1

RS
0

ik+2R
P 0

jk+2 (5.50)

In the MSSM exists a sum rule which relates both the direct and the associated production parameters.
In the SBRPM we can construct an analogous but more complicated sum rule taking into account all
possible final states [60]. The conclusion is that always at least one state will be produced.

5.3.4 Higgs boson decays

5.3.4.1 CP-even Higgs boson decays

The main decay channels for the lightest (or next-to-lightest) neutral CP-even Higgs bosons H 0
1,2 are

H0
1,2 → fif̄i if mH0

1,2
> 2mfi (5.51a)

H0
1,2 → JJ (5.51b)
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Fig. 5.7: On the left, direct production parameter for the second lightest neutral CP-even Higgs boson η2
2 as

function of the direct production parameter for the lightest neutral CP-even Higgs boson η2
1 . On the right, upper

bounds on the masses of the first (dashed green) and second (red solid) lightest CP-even Higgs boson, mH0
1

and
mH0

2
, as a function of the direct production parameter for the second lightest CP-even Higgs boson, η2

2 .

where the invisible decay width to majorons is

Γ(H0
1,2 → JJ) =

g2
H0

1,2JJ

32πmH0
1,2

(5.52)

and for the fermionic decay widths all possible final states have been considered. We have taken into
account the most important QCD corrections for the quark final states as given in [61].

We define the ratio between the invisible decay width and the visible one as

R1,2 =
Γ(H0

1,2 → JJ)∑
j Γ(H0

1,2 → fj f̄j)
. (5.53)

These ratios depend on the couplings gH0
i JJ

which are in general complicated functions of the underlying
parameters. However, using Eq. (5.45) one obtains the following couplings to the unrotated doublet
Higgs fields (H

′0
1 = <(H0

d ) and H
′0
2 = <(H0

u):

g′1 ' hh0vu
vSvR
V 2

(5.54a)

g′2 ' hh0vd
vSvR
V 2

− 2vu
V 2

3∑

j=1

ε2j (5.54b)

Equations (5.54a) and (5.54b) imply that the doublet Higgs bosons can have large branching ratios for the
invisible decay mode if the product of the couplings h and h0 is large. Therefore, scenarios exists where
neutral Higgs bosons have at the same time a large cross section and a large invisible decay branching
ratio [38,39]. This is shown explicitly in Fig. 5.8 where the ratiosRi for the two lightest Higgs bosons are
shown as a function of their direct production parameter ηi for different values of the parameter h [60].

5.3.4.2 CP-odd Higgs boson decays

The main decay channels for the lightest neutral CP-odd Higgs boson A0
1 are:

A0
1 → fif̄i if mA0

1
> 2mfi (5.55a)

A0
1 → H0

j J if mA0
1
> mH0

j
(5.55b)

A0
1 → JJJ (5.55c)
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The width of the CP-odd Higgs boson to a CP-even Higgs boson and a majoron reads

Γ(A0
1 → H0

i J) =
g2
H0
i A

0
1J

16πm3
A0

1

(
m2
A0

1
−m2

H0
i

)
, (5.56)

and to three majorons

Γ(A0
1 → JJJ) =

mA0
1
g2
A0

1JJJ

3072π3
. (5.57)

Contrary to the neutral CP-even case, the corresponding couplings of the majorons to the unrotated
doublet Higgs boson (=(H0

d ) and =(H0I
u )) appearing in Eqs. (5.56) and (5.57) are zero in first order

approximation, using Eq. (5.45) (detailed expressions are given in Ref. [60]). Therefore, the pseudoscalar
Higgs boson has to have sizable admixtures of both, doublet and singlet components, if it should be
produced at a sizable rate while having at the same time a significant invisible branching ratio. As an
example we show in Fig. 5.9 the masses of A0

1 and H0
2 , the associated production parameter and the

invisible branching ratio of A0
1 as a function of the parameter

√
Γ. One sees that in the region where the

production cross section is at least 1% of the corresponding MSSM cross section, the branching ratio for
the invisible mode varies between 5 and 10% [60].
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5.3.5 Conclusions

We have shown that the model with spontaneously broken R-parity contains a light CP-even Higgs boson
which is mainly doublet and which has a mass below about 150 GeV (like in the NMSSM). As a new
feature we have demonstrated that its invisible decay mode into two majorons can be dominant.

In the case of the CP-even Higgs bosons we have seen that they decay mainly their MSSM coun-
terpart if the doublet component dominates. However, in certain regions of parameter space the singlet
component can be large enough to obtain a branching ratio of the invisible mode up to 10%.

5.4 Charged-Higgs-boson and charged-slepton radiation off a top quark at hadron colliders
Francesca Borzumati and Jean-Loı̈c Kneur

In this contribution we study the production of charged scalar particles radiated off a top quark at hadron
colliders. The charged particles we consider are charged Higgs bosons and charged sleptons in R-parity-
violating models. The remnant of the radiating top quark is the bottom quark in the charged-Higgs-boson
case; in the charged-slepton case, it is most likely to be the down quark, but possibly also the strange and
the bottom quark. Hereafter we shall refer to this production mechanism as strahlung production.

5.4.1 The charged-Higgs-boson case

Charged Higgs bosons, if detected, would be a clear signal of an extended Higgs sector. They are
present in supersymmetric models, which, as is well known, require at least two Higgs doublets of
opposite hypercharge. At hadron colliders, charged Higgs bosons can be pair produced in quark-initiated
processes, such as the Drell–Yan process mediated by an off-shell photon or Z boson, the b-quark fusion
and the W -bosons fusion. All these are tree-level processes. Alternatively, they can be pair produced
through gluon-fusion processes, which however proceed at the one-loop level. In both cases, the cross
sections are not very large, reaching at the LHC ∼ 2–3 fb for mH± = 400 GeV and tan β = 30 [62].
They can also be singly produced in association with other bosons, such as neutral Higgs bosons, or
the W boson. These processes are quark-initiated at the tree level, but they can be gluon-initiated at
the quantum level. Their cross sections may reach up to ∼ 100 fb for the same values of mH± and
tan β [62].

Strahlung off a third-generation quark, which can be gluon-initiated also at the tree level, can
give similarly large or slightly larger cross sections [62–69]. Such a production mechanism can proceed
through the 2 → 2 elementary process gb → tH− and the 2 → 3 processes gg, qq̄ → tH−b̄, which
formally give rise to the hadronic processes pp̄, pp→ tH−X and pp̄, pp→ tH−b̄X , respectively.

Leading-order predictions for the two production cross sections are given in the two top frames
of Fig. 5.10 for the Tevatron and LHC energies, as functions of the charged-Higgs-boson mass, for
three different values of tanβ: tan β = 2, 10, and 50. (For discussions about limits on the H± mass
in Two-Higgs-Doublet Models and supersymmetric models, see Refs. [70–75].) The hadronic cross
sections σ(pp̄, pp → tH−b̄X) are shown by solid lines, σ(pp̄, pp → tH−X) by dashed lines. The
integrations needed to obtain these cross sections are performed by the Monte Carlo integration routine
VEGAS [76]. Moreover, the leading-order parton distribution functions CTEQ4L [77] were used, and the
renormalization (µR) and factorization (µf ) scales were fixed to the threshold value mt + mH± . A
variation of these scales in the interval between (mt + mH±)/2 and 2(mt + mH±) results in changes
up to ±30% in both cross sections. QCD corrections, therefore, may be important, but they have been
completed only for the 2 → 2 processes [78–81]. Part of these corrections are captured by the QCD
correction to the b-quark mass, on which these cross sections depend quite sensitively. A study of their
variation for different values of the b-quark mass can be found in Ref. [82]. (Supersymmetric corrections
to both decays have also been calculated [83, 84].)

In the kinematical region mt > mH± + mb the 2 → 3 elementary processes give the largest
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Fig. 5.10: Cross-sections σ(pp̄ (pp) → t(b̄)H−X) versus mH− , at the Tevatron and the LHC, for tanβ =

2, 10, 50, with mt = 175 GeV, mb = 3 GeV. Renormalization and factorization scales are fixed as µR = µf =

mt + mH− . In the two upper frames the solid lines correspond to the 2 → 3 processes, the dashed lines to the
2 → 2 process. In the two lower frames are shown the cross sections obtained by adding the contributions from
the 2→ 2 and 2→ 3 processes, and subtracting overlapping terms.

hadronic cross section. This can be well approximated by the much simpler resonant production cross
section, given by the on-shell tt̄ production cross section times the branching fraction for the decay
t̄ → H−b̄. In the region mt ∼ mH± +mb, however, this approximation fails to account for the correct
mechanism of production and decay of the charged Higgs boson [85, 86]. When mt < mH± +mb, the
relative size of the two classes of cross sections depends on

√
s and mH± . At the Tevatron centre-of-

mass energy, the quark-initiated 2 → 3 processes still have the dominant role up to intermediate values
of mH± , i.e. up to mH± ∼ 265 GeV. Both classes of cross sections show the typical behaviour as a
function of tanβ, with a minimum at around (mt/mb)

1/2.

When the charged Higgs boson decays leptonically, H− → τ−ντ , the two production mecha-
nisms, which lead to two and one b quark in the final state are independent. (We assume here that it is
possible to detect two b’s and one τ .) This decay channel is suitable for the discovery of the charged
Higgs boson in the region of large and possibly intermediate values of tanβ [87], since it is not plagued
by QCD background as theH− → bt̄mode [69]. The two production mechanisms can be experimentally
distinguished, and studied separately.

When H− decays hadronically, typically into t̄b, the final state to be identified contains at least
three b’s for the 2 → 2 production mechanism, and at least four for the 2 → 3 one. Since tagging so
many b’s seems very difficult, even at the LHC, the two production mechanisms result into final states
that are indistinguishable. In this case, a sum of the two cross sections is necessary. Care must be taken,
however, not to double count the overlapping part, obtained when one of the two initial gluons in the
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Fig. 5.11: Cross sections σ(pp̄ (pp) → t(dk)τ̃X) versus mτ̃ , at the Tevatron and LHC, for λ′33k = 0.5. The
solid lines correspond to the 2 → 3 processes, the dashed lines to the 2 → 2 process. The three curves in each of
the two sets correspond, from top to bottom to dk = d, s, b. Renormalization and factorization scales are fixed as
µR=µf =mt +mτ̃ .

2 → 3 processes produces a bb̄ pair collinear to the initial p or p̄ [65]. Predictions for the appropriately
summed inclusive cross section are shown in lower frames of Fig. 5.10, for both the Tevatron and the
LHC. At the LHC, the cross section for mH± = 400 GeV and tanβ = 30 is about 140 fb. These
cross sections have the same theoretical uncertainty as the individual ones, as well as the same tan β
dependence.

5.4.2 The charged-slepton case

As is well known, the component of the charged Higgs boson with hypercharge −1/2 has the same
quantum numbers as the three superpartners of the charged leptons, l̃, except for the lepton number L.
In Rp-violating models, in which L is violated (by operators with ∆L = 1), these fields cannot be
distinguished. Thus, some of the knowledge acquired by studying the strahlung of H± off a top-quark
line can be applied to investigate a similar production mechanism for charged sleptons.

The relevant operators for this discussion are the superpotential trilinear term−λ ′ijkLiQjDc
k, with

i, j, k = 1, 2, 3. In a basis in which all right-handed quarks and the left-handed down ones are diagonal,
the trilinear superpotential operator gives rise to the lagrangian interaction terms:

L 6L ⊃ λ′imkVmj uLj dRk l̃
∗
L i − λ′ ∗imk dLm dRkν̃

∗
L i + H.c. , (5.58)

where Vmj are elements of the CKM matrix. The second operators in this equation give rise to con-
tributions to neutrino masses. Among the first ones, those with couplings such as λ ′i3k, induce the
production of single charged sleptons in association with the top quark, in complete analogy with the
strahlung production of the charged Higgs boson described before. Couplings like these, with at least
one third-generation index, are only very weakly constrained by present experiments, except for those
giving indications on the values of the neutrino masses. If we postpone for a moment the discussion of
the impact of neutrino physics experiments, values of O(1) for these couplings, for squark masses of
300 GeV, are still not ruled out by other indirect processes [26].

Also in this case, two classes of elementary processes qq̄, gg → t d̄k l̃Li and gdk → tl̃Li, with
dk = d, s or b for k = 1, 2, 3 respectively, are induced by the couplings λ′i3k. Strictly speaking, strahlung
off a top-quark line is obtained, more generally, also from couplings λ′imk with m 6= 3. The cross
sections from these couplings, however, are suppressed by the factor |Vm3|2 (m = 1, 2), which is smaller
than 10−4. We therefore neglect this possibility and consider only the contribution from λ ′i3k.
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In Fig. 5.11, we show the cross sections for strahlung production of τ̃L (i.e. i = 3) at Tevatron and
LHC energies, for the reference value λ′33k = 0.5: solid lines denote σ(pp̄ (pp) → td̄kτ̃LX), dashed
lines denote σ(pp̄ (pp) → tτ̃LX). We assume here that the left–right mixing terms in the slepton mass
matrix are small enough to render τ̃L nearly a mass eigenstate, which we indicate simply by τ̃ in the
following. Obviously, the same cross sections are also obtained for the strahlung production of µ̃L and
ẽL, or simply µ̃ and ẽ, when λ′23k and λ′13k are equal to 0.5. For each of the two sets of cross sections,
induced by the 2 → 2 and the 2 → 3 processes, the three lines correspond, from top to bottom, to
k = 1, 2, 3 in the coupling for λ′33k, and therefore to dk = d, s, b. We observe that among the hadronic
cross sections induced by the 2 → 2 elementary processes, those indicated by the top lines in the two
frames of Fig. 5.11 are initiated by a gluon and mainly a valence d quark; those denoted by the central
and bottom lines are initiated by a gluon and a sea quark, respectively s and b. This is the reason for the
larger values of the cross sections induced by λ′331. Their enhancement with respect to those induced by
λ′333 is >∼ 10, the enhancement with respect to the cross sections induced by λ′332 is roughly a factor of
5 at both colliders. Being mainly light-quark- or gluon-initiated, the cross sections induced by the 2→ 3
elementary processes, on the contrary, have all similar sizes for any value of k in the couplings λ ′33k .
All three curves are practically indistinguishable in the region mt > mτ̃ . The two curves corresponding
to λ′331 and λ′332 are still very similar when mτ̃ >∼ mt. In this same region, they deviate from the curve
corresponding to λ′333, only slightly at the Tevatron, but by a factor of 2 at the LHC. This is essentially
due to the large logarithms αs(µf ) ln(µf/mdk), originating from the gg → td̄kτ̃ diagrams containing a
virtual dk propagator [65], thus enhancing the cross-section for dk = s, d with respect to that for dk = b.
This effect is particularly evident at the LHC, where the gg-initiated processes largely dominate over the
qq̄ ones.

At both colliders, the overall situation for the production cross sections obtained for k = 3 is
similar to that for the production of the charged Higgs boson: the resonant production, described by the
cross section induced by the 2→ 3 processes, well exceeds the production induced by the 2→ 2 process
in the region mt >∼ mτ̃ + mb. The two production mechanisms are of similar size outside this region.
The situation is different in the case in which k = 2, and much more so when k = 1: the cross section
induced by the 2 → 3 processes can be neglected with respect to that due to the 2 → 2 process for
mτ̃ >∼ mt (at the precision of our calculation), and starts exceeding that induced by the 2 → 2 process
only when mτ̃ < mt. There is indeed a region at mτ̃ <∼ mt in which the 2 → 2 process gives rise to a
cross section still larger than that due to the decay of one of the two pair-produced top quarks, which, as
already mentioned, is well described by the cross section induced by the 2 → 3 processes. For k = 1,
this region is 150 GeV <∼ mτ̃ <∼ mt at the LHC, and 160 GeV <∼ mτ̃ <∼ mt at the Tevatron.

To obtain these cross sections, we have assumed that only one of the couplings λ ′33k is present at a
time. There is however no reason why this should be the case. Since d and s jets cannot be distinguished,
at least the two sets of cross sections obtained for k = 1 and k = 2 give rise to the same final states. If the
value of 0.5 is allowed for both couplings λ′331 and λ′332, for each of the two sets of cross sections, those
obtained with these two couplings should be added. (Notice that, in this case, the width of the top quark
in the 2 → 3 processes, in the kinematical region mt <∼ mτ̃ + mb, should be calculated accordingly,
i.e. by considering the contribution from both couplings.) The case of λ′333 is a little more complex
and whether the corresponding cross sections can or cannot be distinguished from those induced by the
couplings λ′33k with k = 1, 2 depends on the decay modes of τ̃ and on how many b quarks can be tagged.
If it cannot be distinguished, and the same value for the three couplings λ′33k is allowed, the overall
production cross sections for τ̃ in the region mτ̃ < mt can be considerably larger: three times the values
indicated by solid lines in the two frames of Fig. 5.11. In the region m τ̃ > mt the overall production
cross section, however, still remains that induced by the coupling λ′331.

This observation brings us back to the aforementioned issue of possible constraints induced on
these couplings by neutrino physics. Neutrino masses get contributions induced by these couplings at
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the one- and two-loop-level. The expressions for these contributions are [22, 26, 67, 88]

mν,ii′ ∼
3

8π2
λ′ikjλ

′
i′jkmdk mdj

(Mk
d̃LR

)kk

m2
d̃k

, (5.59)

mν,ii′ ∼
3g2
j

2(16π2)2
λ′ikkλ

′
i′kkm

2
dk

mχ̃0
j

m2
ν̃

ln

(
m2
d̃k1
m2
d̃k2

m4
dk

)
, (5.60)

where j = 1, 2, g1 and g2 are the U(1) and SU(2) gauge couplings, mν̃ is the sneutrino mass, mχ̃0
j

the

j-th neutralino eigenvalue, mdk the mass of the k-th down quark, mdk(Mk
d̃LR

)kk the LR mixing term
of the k-th down-squark mass matrix, m2

d̃ki
are the two k-th down-squark eigenvalues, and m2

d̃k
is an

average value between these two. Clearly, we have already assumed that intergenerational mixing terms
in the squark mass matrix are negligible. Under this assumption, second and third generation indices in
the Rp-violating couplings in the two-loop contribution must be equal, while this is not the case in the
one-loop contribution. The importance of the two-loop contribution stem from the fact that the parameter
Mk

d̃LR
can be very small. Even if this is not the case, if we takemd̃k

∼ 3mν̃ ,mν̃ ∼ mχ̃0
j
,Mk

d̃LR
∼ md̃k

,
and squark masses at 300 GeV, it is evident that the one- and two-loop contributions to neutrino masses
differ by only one order of magnitude, when k = j, therefore giving one- and two-loop constraints on
the λ′ikk couplings that are numerically very similar. By imposing that the contributions to the neutrino
mass in Eqs. (5.59) and (5.60), does not exceed the value of 1 eV, we obtain, up to coefficients of O(1):

∣∣(λ′ikjλ′i′jk
)∣∣

1−loop ∼< 10−6

(
3 GeV

mdk

)(
3 GeV

mdj

)(
md̃k

300 GeV

)(
300 GeV

|Mk
d̃LR
|

)
, (5.61)

∣∣(λ′ikkλ′i′kk
)∣∣

2−loop ∼< 10−5

(
3 GeV

mdk

)2 ( mν̃

100 GeV

)2
(

100 GeV

|mχ̃0 |

)(
ln(100)

ln(md̃k
/mdk)

)
.(5.62)

The constraints imposed on λ′i33 (j = k = 3) by the two previous equations are rather severe.
Even in the case in which |Mk

d̃ LR
| is practically vanishing, the two-loop consraints say that |λ′i33| cannot

be larger than 3 × 10−3. When k = 3 and j 6= 3, a constraint on λ′i3j , the coupling responsible for the
production of a charged slepton in association with a top quark, can only come from Eq. (5.59). Strictly
speaking, however, this is a constraint on the product of two different couplings λ ′i3j and λ′ij3, and there
are no a priori reasons why the suppression on the right-hand side has to be inherited only by λ ′i3j and
does not have to be shared equally between the two couplings, or even be completely borne out by λ ′ij3.
(For |λ′i3j | ∼ |λ′ij3|, when j = 2 it should be |λ′i32| <∼ 5 × 10−3, for j = 1, |λ′i31| <∼ 3 × 10−2. A
suppression of |Mk

d̃LR
| could, however, ease out these upper bounds.) Clearly all these constraints can

still be evaded if the contributions to neutrino masses in Eqs. (5.59) and (5.60) are cancelled by other
one- and two-loop contributions induced by other Rp-violating couplings [22, 67]. If this were the case
and the value of 0.5 were allowed for both couplings λ′i32 and λ′i31, then the two sets of cross sections
in Fig. 5.11 would have to be summed, as mentioned a little earlier. This would have practically no
consequences for the cross sections induced by the 2 → 2 processes, but it would double the charged-
slepton rate of production at the Tevatron (LHC) in the region m l̃

<∼ 160 (150) GeV, where the 2 → 3
processes give the dominant contribution. If no more than 2b’s can be detected in the final state obtained
after the decay of the charged slepton, and if it could be λ′i33 = 0.5, also the cross sections generated by
this coupling should be combined to the other two.

We focus on the couplings λ′i3j (j = 1, 2) to discuss the signature of the final state obtained after
the slepton decay. Its main decay mode is l̃i → liχ

0. The neutralino, in turn, can decay through the
same coupling λ′i31 into [89]: bd̄νi, db̄νi, td̄li, dt̄l̄i. Particularly interesting is the mode td̄li; for a mass
of l̃i larger than 160 GeV at the Tevatron or 150 GeV at the LHC, this gives rise to

t l̃i → t liχ
0 → 2t+ 2li + jet → 2b+ 2W + 2li + jet , (5.63)
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with two equal-sign leptons. Notice that these two leptons do not have to be of the same type since two
λ′i31 couplings, with two different i indices, may intervene at the level of production and of decay of the
charged slepton. If one of the two W ’s decays leptonically, the final state with three leptons, two b’s jets
and missing energy cannot be overlooked. The obvious background for such a final state would be given
by the decay products of a tt̄ pair with tt̄→ bb̄W+W−, with both W ’s decaying leptonically and one b
quark semileptonically. The identification of two b’s would then allow us to distinguish the signal from
the background without too much loss in the signal, at least in the case in which there are no τ ’s among
the leptons.

REFERENCES

[1] S. Weinberg, Phys. Rev. D26, 287 (1982).
[2] N. Sakai and T. Yanagida, Nucl. Phys. B197, 533 (1982).
[3] G. R. Farrar and P. Fayet, Phys. Lett. B76, 575 (1978).
[4] M. Maltoni, T. Schwetz, M. A. Tortola and J. W. F. Valle, New J. Phys. 6, 122 (2004), [hep-

ph/0405172].
[5] L. J. Hall and M. Suzuki, Nucl. Phys. B231, 419 (1984).
[6] B. de Carlos and P. L. White, Phys. Rev. D54, 3427 (1996), [hep-ph/9602381].
[7] E. Nardi, Phys. Rev. D55, 5772 (1997), [hep-ph/9610540].
[8] R. Hempfling, Nucl. Phys. B478, 3 (1996), [hep-ph/9511288].
[9] H.-P. Nilles and N. Polonsky, Nucl. Phys. B484, 33 (1997), [hep-ph/9606388].

[10] M. Hirsch, M. A. Diaz, W. Porod, J. C. Romao and J. W. F. Valle, Phys. Rev. D62, 113008 (2000),
[hep-ph/0004115].

[11] M. Hirsch, C. Hugonie, J. C. Romao and J. W. F. Valle, JHEP 03, 020 (2005), [hep-ph/0411129].
[12] A. Dedes, S. Rimmer, J. Rosiek and M. Schmidt-Sommerfeld, Phys. Lett. B627, 161 (2005), [hep-

ph/0506209].
[13] F. de Campos, M. A. Garcia-Jareno, A. S. Joshipura, J. Rosiek and J. W. F. Valle, Nucl. Phys. B451,

3 (1995), [hep-ph/9502237].
[14] B. C. Allanach, A. Dedes and H. K. Dreiner, Phys. Rev. D69, 115002 (2004), [hep-ph/0309196].
[15] H. K. Dreiner and M. Thormeier, Phys. Rev. D69, 053002 (2004), [hep-ph/0305270].
[16] D. Aristizabal Sierra, M. Hirsch and W. Porod, JHEP 09, 033 (2005), [hep-ph/0409241].
[17] B. C. Allanach, A. Dedes and H. K. Dreiner, Phys. Rev. D60, 075014 (1999), [hep-ph/9906209].
[18] Y. Ashie et al. (Super-Kamiokande), Phys. Rev. D71, 112005 (2005), [hep-ex/0501064].
[19] B. Aharmim et al. (SNO Collaboration), Phys. Rev. C72, 055502 (2005), [nucl-ex/0502021].
[20] T. Araki et al. (KamLAND Collaboration), Phys. Rev. Lett. 94, 081801 (2005), [hep-ex/0406035].
[21] A. Abada and M. Losada, Phys. Lett. B492, 310 (2000), [hep-ph/0007041].
[22] F. Borzumati and J. S. Lee, Phys. Rev. D66, 115012 (2002), [hep-ph/0207184].
[23] M. Hirsch and W. Porod, Phys. Rev. D68, 115007 (2003), [hep-ph/0307364].
[24] M. Hirsch, W. Porod, J. C. Romao and J. W. F. Valle, Phys. Rev. D66, 095006 (2002), [hep-

ph/0207334].
[25] A. Bartl, M. Hirsch, T. Kernreiter, W. Porod and J. W. F. Valle, JHEP 11, 005 (2003), [hep-

ph/0306071].
[26] R. Barbier et al., Phys. Rep. 420, 1 (2005), [hep-ph/0406039].
[27] F. Takayama and M. Yamaguchi, Phys. Lett. B485, 388 (2000), [hep-ph/0005214].
[28] M. Hirsch, W. Porod and D. Restrepo, JHEP 03, 062 (2005), [hep-ph/0503059].
[29] H. K. Dreiner, Pramana 51, 123 (1998).

268

WORKSHOP ONCP STUDIES AND NON-STANDARD HIGGS PHYSICS

268



[30] W. Porod, M. Hirsch, J. Romao and J. W. F. Valle, Phys. Rev. D63, 115004 (2001), [hep-
ph/0011248].

[31] D. Restrepo, W. Porod and J. W. F. Valle, Phys. Rev. D64, 055011 (2001), [hep-ph/0104040].
[32] C. S. Aulakh and R. N. Mohapatra, Phys. Lett. B119, 136 (1982).
[33] G. G. Ross and J. W. F. Valle, Phys. Lett. B151, 375 (1985).
[34] A. Masiero and J. W. F. Valle, Phys. Lett. B251, 273 (1990).
[35] J. C. Romao, C. A. Santos and J. W. F. Valle, Phys. Lett. B288, 311 (1992).
[36] M. Shiraishi, I. Umemura and K. Yamamoto, Phys. Lett. B313, 89 (1993).
[37] K. Huitu and J. Maalampi, Phys. Lett. B344, 217 (1995), [hep-ph/9410342].
[38] J. C. Romao, F. de Campos and J. W. F. Valle, Phys. Lett. B292, 329 (1992), [hep-ph/9207269].
[39] M. Hirsch, J. C. Romao, J. W. F. Valle and A. Villanova del Moral, Phys. Rev. D70, 073012 (2004),

[hep-ph/0407269].
[40] A. Bartl et al., Nucl. Phys. B502, 19 (1997), [hep-ph/9612436].
[41] K. Huitu, J. Maalampi and K. Puolamaki, Eur. Phys. J. C6, 159 (1999), [hep-ph/9705406].
[42] A. Heister et al. (ALEPH Collaboration), Eur. Phys. J. C31, 1 (2003), [hep-ex/0210014].
[43] J. Abdallah et al. (DELPHI Collaboration), Eur. Phys. J. C36, 1 (2004), [hep-ex/0406009].
[44] P. Achard et al. (L3 Collaboration), Phys. Lett. B524, 65 (2002), [hep-ex/0110057].
[45] G. Abbiendi et al. (OPAL Collaboration), Eur. Phys. J. C33, 149 (2004), [hep-ex/0310054].
[46] D. Acosta et al. (CDF Collaboration), Phys. Rev. Lett. 92, 051803 (2004), [hep-ex/0305010].
[47] F. Abe et al. (CDF Collaboration), Phys. Rev. Lett. 83, 2133 (1999), [hep-ex/9908063].
[48] V. M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 89, 261801 (2002), [hep-ex/0207100].
[49] V. M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 89, 171801 (2002), [hep-ex/0111053].
[50] J. Abdallah et al. (DELPHI Collaboration), Eur. Phys. J. C28, 15 (2003), [hep-ex/0303033].
[51] A. Aktas et al. (H1 Collaboration), Phys. Lett. B599, 159 (2004), [hep-ex/0405070].
[52] A. Aktas et al. (H1 Collaboration), Eur. Phys. J. C36, 425 (2004), [hep-ex/0403027].
[53] J. Breitweg et al. (ZEUS Collaboration), Eur. Phys. J. C16, 253 (2000), [hep-ex/0002038].
[54] D. Acosta et al. (CDF Collaboration), Phys. Rev. Lett. 91, 171602 (2003), [hep-ex/0307012].
[55] B. Abbott et al. (D0 Collaboration), Phys. Rev. D62, 071701 (2000), [hep-ex/0005034].
[56] D. Choudhury et al., Phys. Rev. D68, 075007 (2003), [hep-ph/0304192].
[57] T. Behnke, S. Bertolucci, R. D. Heuer and R. Settles, editors, TESLA: The superconducting electron

positron linear collider with an integrated X-ray laser laboratory. Technical design report. Pt. 4: A
detector for TESLA, 2001, DESY-01-011.

[58] P. Fayet, Nucl. Phys. B90, 104 (1975).
[59] J. R. Ellis, J. F. Gunion, H. E. Haber, L. Roszkowski and F. Zwirner, Phys. Rev. D39, 844 (1989).
[60] M. Hirsch, J. C. Romao, J. W. F. Valle and A. Villanova del Moral, Phys. Rev. D73, 055007 (2006),

[hep-ph/0512257].
[61] A. Djouadi, M. Spira and P. M. Zerwas, Z. Phys. C70, 427 (1996), [hep-ph/9511344].
[62] A. Djouadi, hep-ph/0503173.
[63] J. F. Gunion, Phys. Lett. B322, 125 (1994), [hep-ph/9312201].
[64] J. L. Diaz-Cruz and O. A. Sampayo, Phys. Rev. D50, 6820 (1994).
[65] F. Borzumati, J.-L. Kneur and N. Polonsky, Phys. Rev. D60, 115011 (1999), [hep-ph/9905443].
[66] D. J. Miller, S. Moretti, D. P. Roy and W. J. Stirling, Phys. Rev. D61, 055011 (2000), [hep-

ph/9906230].
[67] F. Borzumati, J. S. Lee and F. Takayama, (2002), [hep-ph/0206248].

269

THE MSSM WITH R-PARITY V IOLATION

269



[68] D. Roy, Mod. Phys. Lett. A19, 1813 (2004).
[69] B. C. Allanach et al., Les Houches ‘Physics at TeV colliders 2005’ Beyond the Standard Model

Working Group: summary report, hep-ph/0602198.
[70] M. Ciuchini, G. Degrassi, P. Gambino and G. Giudice, Nucl. Phys. B527, 21 (1998).
[71] F. Borzumati and C. Greub, Phys. Rev. D58, 074004 (1998).
[72] F. Borzumati and C. Greub, Phys. Rev. D59, 057501 (1999).
[73] F. Borzumati and A. Djouadi, Phys. Lett. B549, 170 (2002).
[74] G. Degrassi, P. Gambino and G. Giudice, JHEP 0012, 009 (2000).
[75] P. Gambino and M. Misiak, Nucl. Phys. B611, 338 (2001).
[76] G. P. Lepage, J. Comput. Phys. 27, 192 (1978).
[77] H. L. Lai et al., Phys. Rev. D55, 1280 (1997), [hep-ph/9606399].
[78] T. Plehn, Phys. Rev. D67, 014018 (2003), [hep-ph/0206121].
[79] E. L. Berger, T. Han, J. Jiang and T. Plehn, Phys. Rev. D71, 115012 (2005), [hep-ph/0312286].
[80] N. Kidonakis, Int. J. Mod. Phys. 19, 1793 (2004), [hep-ph/0303186].
[81] N. Kidonakis, JHEP 0505, 011 (2005), [hep-ph/0412422].
[82] M. Carena et al., Report of the Tevatron Higgs working group, hep-ph/0010338.
[83] L. G. Jin, C. S. Li, R. J. Oakes and S. H. Zhu, Phys. Rev. D62, 053008 (2000), [hep-ph/0003159].
[84] A. Belyaev, J. Guasch and J. Sola, Nucl. Phys. Proc. Suppl. 116, 296 (2003), [hep-ph/0210253].
[85] M. Guchait and S. Moretti, JHEP 0201, 001 (2002), [hep-ph/0110020].
[86] J. Alwall, C. Biscarat, S. Moretti, J. Rathsman and A. Sopczak, Eur. Phys. J. C39S1, 37 (2005),

[hep-ph/0312301].
[87] S. Moretti, Pramana 60, 369 (2003), [hep-ph/0205104].
[88] F. Borzumati, Y. Grossman, E. Nardi and Y. Nir, Phys. Lett. B384, 123 (1996).
[89] F. Borzumati, R. Godbole, J. L. Kneur and F. Takayama, JHEP 07, 037 (2002), [hep-ph/0108244].

270

WORKSHOP ONCP STUDIES AND NON-STANDARD HIGGS PHYSICS

270


