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Abstract. Detecting stochastic background radiation of cosmological origin is an exciting
possibility for current and future gravitational-wave (GW) detectors. However, distinguishing
it from other stochastic processes, such as instrumental noise and astrophysical backgrounds, is
challenging. It is even more delicate for the space-based GW observatory LISA since it cannot
correlate its observations with other detectors, unlike today’s terrestrial network. Nonetheless,
with multiple measurements across the constellation and high accuracy in the noise level,
detection is still possible. In the context of GW background detection, previous studies have
assumed that instrumental noise has a known, possibly parameterized, spectral shape. To
make our analysis robust against imperfect knowledge of the instrumental noise, we challenge
this crucial assumption and assume that the single-link interferometric noises have an arbitrary
and unknown spectrum. We investigate possible ways of separating instrumental and GW
contributions by using realistic LISA data simulations with time-varying arms and second-
generation time-delay interferometry. By fitting a generic spline model to the interferometer
noise and a power-law template to the signal, we can detect GW stochastic backgrounds up to
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energy density levels comparable with fixed-shape models. We also demonstrate that we can
probe a region of the GW background parameter space that today’s detectors cannot access.
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1 Introduction

The hunt for stochastic gravitational-wave backgrounds (SGWBs) (see [1–7] for recent reviews)
has started with the advent of gravitational wave (GW) astronomy, based on sensitive laser
interferometry [8–18] and the pulsar timing arrays [19–24]. Future earth-based experiments [25–
27] as well as space-borne missions [28–35] will also join this hunt. For the Laser Interferometer
Space Antenna (LISA) mission [36] in particular, the search for a SGWB constitutes a major
science objective.

Produced by multiple incoherent emissions, stochastic GWs can stem from both cosmo-
logical and astrophysical origins. In cosmology, they could originate for primordial quantum
fluctuations possibly amplified by the cosmic inflation. They would then be unique tracers of
the early and opaque universe, well before the last scattering surface. Other mechanisms like
first-order phase transitions and cosmic strings, could also produce stochastic emissions of
GWs, carrying information about the existence of topological defects in the early universe.
Thus the detection of SGWB by LISA should provide invaluable information on the astrophys-
ical sources properties and could give hints on some of the physics processes which may have
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taken place in the early universe. However, in order to carry out this scientific program, it will
be mandatory to be able to distinguish the sources signal from the instrumental background
noise, which represents a major challenge for LISA. Sorting out the sources categories in order
to shed light on the underlying physics of a cosmological SGWB represents yet an additional
major challenge.

The precise shape of the SGWB spectrum from cosmological origin over the entire LISA
frequency band is difficult to predict can be considered unknown at present time. A wide
variety of possible early-universe phenomena, either at the inflationary or post-inflationary
stages, are possible source candidates. Likewise, large numbers of uncorrelated and unresolved
astrophysical sources can superimpose and lead to SGWBs with complex spectral shapes.
SGWBs from both cosmological and astrophysical origins are furthermore likely to overlap,
thus resulting in a SGWB even more complex to decipher thus yielding a complex total
SGWB which would be challenging to characterize.

Capturing the main features of a SGWB spectral shape and identifying its origin using
parametrizations with various level of complexity is therefore a challenging task. Widely used
parametrizations include simple power laws, monotonic signals with smoothly growing or
decreasing slopes, signals with one or more exponential bumps, broken power laws, given by
smooth function with changing slope at some given frequencies, or wiggly signals. Among
the many challenges of dealing with SGWB, assessing LISA’s capability to separate different
components, i.e., instrumental noise, galactic and extra-galactic foregrounds, astrophysical
backgrounds, as well cosmological backgrounds, is of particular importance. Much work in
these two directions has already begun (see for example [37–49]).

In contrast to previous SGWB search methods where the LISA instrumental noise
was parametrized with a fixed and known spectral shape, we investigate in this paper an
approach to distinguish a simple SGWB signal from the instrumental noise assuming that
the single-link interferometric noises have an arbitrary and unknown spectrum. As a proof
of principle, we choose to restrict ourselves to simple power laws to describe the SGWB
signal, deferring the discussion of more complex signals (like cosmic strings [49] and phase
transitions [50, 51]) for future study and publication. Yet, power laws can be representative of
various stochastic source types. A power law with spectral index n = 2/3 is usually considered
to be a good approximation to describe the SGWB from compact binaries [1, 13], whereas
a n = 0 power law signal reflects a scale-free cosmological generation mechanism typically
driven by early-universe slow-roll inflation scenarios, or by cosmic defect networks [4, 52]
which exhibit scale invariance in the LISA band [4]. Furthermore, as mentioned in [43] and
references therein, spectral indices in the range 0.5 . n . 1 in the presence of a kinetic
energy-dominated phase (see for example [53] for a review) can also be considered.

There exists various features that could be exploited in order to test LISA’s ability
to resolve a SGWB signal. The characteristics of the SGWB itself, such as its amplitude,
the possible particular frequency slope(s) or the possible presence of bumps can be used to
distinguish the signal from the noise. The time variability of the SGWB for cosmological sources
is not expected to provide a useful handle, and for some astrophysical sources, such as Galactic
binaries, the effect is expected to be marginal [43], although accounting for a non-stationary
behaviour can help the inference [39]. One could also try to use anisotropies of the SGWB
to distinguish different sources as they are characterized by different angular spectra [54].
However, to focus the scope of our study, we will refrain from discussing the possible role
of anisotropies. This feature deserves further studies (which could also possibly imply further
assumptions on the instrumental noise) and we defer this discussion for future work.

– 2 –



J
C
A
P
0
4
(
2
0
2
3
)
0
6
6

In this work, we take a step towards more realism by using time-domain LISA data
simulations with time-varying, unequal arms and second-generation time-delay interferome-
try [55–59]. As for the data analysis, we introduce flexibility in the noise modelling by fitting
generic spline functions to the interferometer noise. While previously used to model the noise
power spectral density (PSD) for both LIGO-Virgo [60–63] and LISA data analysis [64, 65],
such a technique has not been tested for SGWB detection. We make use of three main sensible
features to disentangle SGWB from noise: i) a fixed, parametrized signal template; ii) the
knowledge of the distinctive transfer functions for noise and GW strain and iii) the use of the
full covariance matrix of the time-delay interferometry (TDI) variables. Besides, we rely on
two idealizations in this work. First, we assume all non-stochastic GW sources have been
perfectly subtracted from the data, thus leaving behind idealized residual data. Second, we
assume a unique transfer function for the noise. These simplifications allow us to focus on
introducing more degrees of freedom in modelling the noise’s spectral shape and assess its
impact on detection.

The paper is organized as follows. In section 2 we describe the way we simulate the
data. In section 3 we detail the data analysis method including the model assumptions, the
likelihood (section 3.2) and the priors (section 3.3) we use. We describe our results on the
detection of the SGWB signal and the associated parameter estimation in section 4 before
concluding with a discussion on the results and prospects for future developments in section 5.

2 Data simulation

2.1 Stochastic gravitational-wave background

A SGWB is defined as the superposition of many non-resolvable random signals. Formally,
we write the strain as

h(t) =
∫

h(t, n̂) dn̂, (2.1)

where we integrate over all possible source directions n̂. We use LISA GW Response [66] to
simulate the SGWB signal. LISA GW Response approximates this sky integral as a discrete
sum over a limited number of point sources N (sky resolution). The stochastic point sources
are evenly spread on the celestial sphere using HEALPix1 [67, 68], with direction vectors n̂k
for k = 1, . . . , N . The previous equation now reads

h(t) =
N∑
k=1

h(t, n̂k). (2.2)

Our model fixes Sh(f), the strain PSD, defined by the long-duration limit of the expectation
of its Fourier transform’s square modulus, as

Sh(f, n̂k) ≡ lim
T→+∞

E

 1
2T

∣∣∣∣∣
∫ +T

−T
hp(t, n̂k)e−2iπft dt

∣∣∣∣∣
2
 , (2.3)

where we have written the strain in the traceless-transverse gauge for the specific source k,
hence with the two polarizations p = +,×.

1http://healpix.sourceforge.net.
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We assume that the spectrum of GW energy density per logarithmic frequency intervals
at present day is characterized by a power law

ΩGW(f) = Ω0

(
f

f0

)n
, (2.4)

where Ω0 and n are respectively the energy density at the pivot frequency f0 and the spectral
index, i.e., the model parameters we will have to estimate. The pivot frequency is chosen at the
geometric mean of the bounds of the analysed frequency bandwidth, so that f0 =

√
fminfmax

with fmin = 0.1 mHz and fmax = 100 mHz.
We assume that the SGWB is isotropic, i.e.,

Sh(f, n̂k) = 1
N
Sh(f) ∀k, (2.5)

and relate ΩGW(f) to the one-sided GW strain power spectral density as [4]

Sh(f) = ΩGW(f) 3H2
0

4π2f3 , (2.6)

where H0 is the Hubble parameter at present day.
We generate the stochastic point source’s strain in the time domain, using an inverse

Fourier-transform method.

2.2 Link response

We describe the instrument and the measurements following the standard LISA conventions,
which are illustrated in figure 1. Spacecraft are indexed from 1 to 3 clockwise when looking
down on the z-axis. Movable optical sub-assemblys (MOSAs) are indexed with two numbers
ij, where i is the index of the spacecraft the system is mounted on (local spacecraft), and j is
the index of the spacecraft the light is received from (distant spacecraft).

The LISA measurements are labelled according to the MOSA on which they are performed.
Light propagation times are indexed according to the MOSA on which they are measured, i.e.,
the receiving MOSA. In the rest of this paper, we only write quantities for a specific choice of
indices (spacecraft or MOSA), and leave it to the reader to form all remaining expressions
using circular permutation and swapping of indices.

The first step to computing the instrument response to the SGWB is to compute the
deformation induced on the six LISA laser links via LISA GW Response. We use the linearity
of the response function to write the overall response y12(t) of link 12 as the discrete sum of
the individual link responses to the N point sources,

y12(t) =
N∑
k=1

y12,k(t). (2.7)

Similar equations can be written for all 6 LISA links.
The time series of frequency shifts y12,k(t), experienced by light traveling along link 12,

is computed by projecting the strain of point source k on the link unit vector (computed from
the spacecraft positions). The derivation of the link response, under usual approximations
(expansion of the wave propagation time to first order, spacecraft immobile during this
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Figure 1. Standard LISA conventions. Spacecraft are labelled with 1, 2, 3; MOSAs are identified
with two indices. Elements and quantities uniquely related to one spacecraft or one MOSA carry the
same label.

propagation time) can be found in appendix A, as well as in the literature [e.g. 69]. It reads

y12,k(t) ≈
1

2
(
1− k̂k · n̂12(t)

) [H12,k

(
t− L12(t)

c
− k̂k · x2(t)

c

)
−H12,k

(
t− k̂k · x1(t)

c

)]
.

(2.8)
The yij time series along the 6 LISA links are then combined in various ways to compute

the TDI observables.

2.3 Instrumental noise

We include the dominant secondary noises in our analysis, which are test-mass acceleration
noise and readout noise (mainly shot noise). We assume that laser frequency noise is perfectly
suppressed by TDI, and therefore do not include it in our simulations.

We assume that the noises are uncorrelated in each MOSA, and identically distributed.
The PSD of test-mass acceleration noise is given by

STM(f) = a2
TM

[
1 +

(
f1
f

)2] [
1 +

(
f

f2

)4]
, (2.9)

where aTM = 3× 10−15 ms−2, f1 = 4× 10−4 Hz and f2 = 8mHz. The readout noise PSD is

SOMS(f) = a2
OMS

[
1 +

(
f3
f

)4]
, (2.10)

where aOMS = 15× 10−12 mHz−1/2 and f3 = 2mHz.
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We generate instrumental noise directly at the science interferometer level, assuming no
correlations between different interferometers. This way, only the diagonal elements of the
links’ noise covariance matrix are non-vanishing. While unrealistic, this assumption is meant
to simplify the subsequent analysis at relatively small cost in terms of impact on the noise
covariance structure (see section 2.4).

2.4 Time-delay interferometry

TDI combinations are defined as linear combinations of time-shifted measurements. The first
and second-generation Michelson combinations, X1 and X2, are given by [58],

X1 = y13 + D13y31 + D131y12 + D1312y21

− [y12 + D12y21 + D121y13 + D1213y31],
(2.11)

X2 = X1 + D13121y12 + D131212y21 + D1312121y13 + D13121213y31

− [D12131y13 + D121313y31 + D1213131y12 + D12131312y21],
(2.12)

Delay operators are defined by

Dijx(t) = x(t− Lij(t)), (2.13)

where Lij(t) is the delay time along link ij at reception time t. Because light travel times
evolve slowly with time, we compute chained delays as simple sums of delays rather than
nested delays, i.e.,

Di1,i2,...,inx(t) = x

(
t−

n−1∑
k=1

Likik+1(t)
)
. (2.14)

While this approximation cannot be used to study laser-noise suppression upstream of the
LISA data analysis, it is sufficient when computing the response function. Note that these
equations are left unchanged (up to a sign) by reflection symmetries. However, applying the
three rotations generates the three Michelson combinations, X,Y, Z, for both generations. In
our simulation, we compute them using the PyTDI [70] software.

Michelson combinations have highly-correlated noises. An quasi-uncorrelated set of
TDI variables, A,E, T , can be obtained from linear combinations of X,Y, Z, given by [71].
However, A,E, T are only exactly orthogonal (or uncorrelated) under the equal-armlength,
equal noise assumptions. In this work, armlengths are not equal, so that we cannot consider
A,E, T as exactly uncorrelated. To visualize it, we compute their theoretical PSDs in figure 2,
which shows that below 3mHz the cross spectral density (CSD) levels (dashed curves) become
dominant over the TT PSD (solid brown curve). Therefore, we perform the data analysis
directly from TDI combinations X,Y, Z by modelling their full 3×3 covariance (see section 3).

We illustrate in figure 3 the effect of the assumption we introduced in section 2.3 when
neglecting the cross-correlations among the links yij , where we compare the change in GW
sensitivity of TDI variables A and T with (solid curves) and without (dashed curves) the
uncorrelated link assumption. While the relative error remains smaller than 5 % at high
frequency, the plot shows a discrepancy of about 50 % in A and a factor of 4 in T at frequencies
below 10mHz. In other words, the assumption leads to a slight decrease of the overall noise
level, and an overestimation of the attenuating power of T at low frequency, which is usually
considered as a quasi-null channel. However, the asymptotic behavior is the same: in the
low-frequency limit, the T channel is not suppressing gravitational waves better than A or E.
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Figure 2. PSDs of TDI A = E and T (solid dark blue and brown lines, respectively) compared with
their CSDs (light blue, red, and grey dashed lines).
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Figure 3. Effect of neglecting the cross-correlations among link measurements on the TDI sensitivity.
The PSDs of TDI A and T with correlated links are represented by the continuous blue and green
curves, respectively. The effect of assuming uncorrelated links is shown by the dashed black and
gray lines. At high frequency (above 5mHz), the difference is negligible. A deviation appears at low
frequency, where the assumption leads to underestimating the strain noise level for both channels.
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3 Data analysis model

In the analysis, we consider the data vector d̃ ≡ (X̃, Ỹ , Z̃)T of the Fourier-transformed TDI
variables. For each frequency f , we encode the TDI transformation of eq. (2.12) in a matrix
MTDI, so that can write the measured data d̃ as a function of the link vector ỹ as

d̃(f) = MTDI(f)ỹ(f), (3.1)

where we defined the link vector as

ỹ = (ỹ12, ỹ23, ỹ31, ỹ13, ỹ32, ỹ21)T . (3.2)

To compute the transfer function MTDI(f), it is sufficient to approximate all the delays
operators defined in eq. (2.13) as complex phasing operators [72],

Dij x̃(f) ≈ x̃(f)e−2πifLij . (3.3)

We assume that the link data is only made of two stochastic processes: the SGWB signal
ỹGW and the instrumental noise ñ, so that

ỹ(f) = ỹGW(f) + ñ(f). (3.4)

Since signal and noise are independent processes, the TDI data covariance can be written as
the sum of the SGWB and instrumental noise link covariances,

Cy(f) = 〈ỹỹ†〉 = CGW(f) + Cn(f). (3.5)

We straightforwardly deduce the TDI covariance from eq. (3.1) as

Cd(f) = MTDI(f)Cy(f)M†
TDI(f). (3.6)

Note that it is not necessary to include laser frequency noise, as we assume that it is
perfectly canceled by TDI. As discussed in section 2.3, we further assume that the noises
affecting each link measurements are uncorrelated and all characterized by the same one-sided
PSD Sn(f). Therefore, their covariance is diagonal:

Cn(f) ≡ 〈ññ†〉 = 1
2Sn(f)I6. (3.7)

This assumption allows us to easily express the contribution of the noise to the full covariance
as a simple product

Cn(f) = 1
2Sn(f)MTDI(f)M†

TDI(f). (3.8)

As for the GW signal, we assume that it is isotropic and stationary, so that its response
at any frequency f and time t0 can be encoded in a 6× 6 matrix R(f, t0) as

CGW(f) = Sh(f)R(f, t0), (3.9)

where the elements of R(f, t0) are explicitly derived in appendix B. The background isotropy
brings a quasi-independence on time, so that the choice of t0 is irrelevant in our study.

The key point of the analysis is that we assume that we know both the frequency-
dependent TDI transfer matrix MTDI(f) and the GW response matrix R(f, t0). Both of
them depend on inter-spacecraft distances, which we suppose we know perfectly. Then, the
parameters we have to estimate are the ones describing the signal PSD Sh(f) and the noise
PSD Sn(f). Eq. (2.4) provides the parametrization of Sh(f), which includes the energy
density Ω0 and spectral index n. The model for Sn(f) is detailed in the next section.
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3.1 Noise model

We aim at having a generic and flexible modeling of the noise. To this end, we model the
single-link noise log-PSD with interpolating cubic B-spline functions. This basis provides a
stable parametrization of any sufficiently smooth function, avoiding numerical errors that can
arise when using high order polynomials. The parameters of the model are the logarithm of
the control frequencies xi and their corresponding log-PSD ordinates ai. We fix the first and
last control frequencies to be the boundaries of the analysed frequency bandwidth, so that
x0 = log fmin and xQ = log fmax, where Q+ 1 is the total number of control points. Then, we
construct the spline function

logSn(f) =
Q+1∑
i=1

aiBi,3 (ξ, f) , (3.10)

where ai are the spline coefficients and ξ is the vector of the Q+ 5 spline knots. The basis
elements Bi,3(ξ, f) are defined recursively as

Bi,0(f) = 1, if ξi ≤ log f < ξi+1, otherwise 0,

Bi,k(f) = log f − ξi
ξi+k − ξi

Bi,k−1(f) + ξi+k+1 − log f
ξi+k+1 − ξi+1

Bi+1,k−1(f). (3.11)

The spline knots are directly related to the control points as

ξi = x0 ∀i ∈ [0, 3];
ξi+3 = xi ∀i ∈ [0, Q];
ξi+3 = xQ ∀i ∈ [Q, Q+ 3];

logSn(exi+3) = ai ∀i ∈ [0, Q].

(3.12)

In practice, we use the interp1d function of the SciPy package [73], which builds the
spline basis based on the control log-frequencies xi and their corresponding ordinates ai. Since
the frequencies of the first and last control points are fixed, the spline model is described by
2Q parameters that we can gather in a vector θn = (x0, . . . , xQ, a1, . . . , aQ−1)T .

3.2 Likelihood

In principle, one could directly write down the likelihood for the frequency-domain TDI data
d̃ using Whittle’s approximation [74]. To decrease the computational cost of the likelihood
evaluation, we instead consider frequency sample averages of the periodogram.

Let us define the normalized windowed discrete Fourier transform (DFT) of any multi-
variate time series of length Nx = bTfsc as

x̃(fk) =
√

2
κ2fs

Nx−1∑
n=0

wnxne−2πkn/Nx , (3.13)

where wn is a time window smoothly decreasing to zero at the edges of the time series, and
κp =

∑Nx−1
n=0 wn

p. We choose this normalization such that the periodogram is directly given by
the square modulus of x̃k, and its expectation is directly comparable with the one-sided PSD.

At each frequency bin fk, we define the 3×3 periodogram matrix as P(fk) ≡ d̃(fk)d̃(fk)†.
To compress the data, we split the frequency series d̃ into J consecutive, non-overlapping
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segments. We call fj the central frequency and nj the size of each segment j. We define the
averaged periodogram matrix P̄(fj) by averaging the periodograms over the frequency bins
within each segment j,

P̄(fj) ≡
1
nj

j+
nj
2∑

k=j−
nj
2

d̃(fk)d̃(fk)†. (3.14)

If the DFTs d̃(fk) were uncorrelated between different frequency bins, the matrix Y(fj) ≡
ν(fj)P(fj) would follow a complex Wishart distribution with ν(fj) = nj degrees of freedoms
(DoFs) and scale matrix Cd(f), with a probability density function

p(Y(f)|θ) =
|Y(f)|ν−3 exp

[
− tr(C−1

d Y(f))
]

|Cd(f)|ν · CΓ̃3(ν)
, (3.15)

where CΓ̃p(ν) is the complex gamma function, tr (·) is the trace operator and |A| is the
determinant of any matrix A. In reality, the frequency bins that are close to each other are
mildly correlated, depending on the choice of the window function wn in eq. (3.13). As a
result, the effective number of DoFs ν(fj) is smaller than the number of averaged frequency
bins nj . A good measure of the reduction factor is provided by the normalized equivalent
noise bandwidth Nbw, defined for any window w and time series size Nd as

Nbw = Nd
κ2
κ1
, (3.16)

which is expressed in number of frequency bins. Values of Nbw for various windows can be
found in [75]. The effective number of DoFs is then given by ν(fj) = nj/Nbw.

Taking the logarithm of eq. (3.15) above and keeping only the terms depending on the
parameters θ yields

log p(Y(f)|θ) = − tr(C−1
d Y(f))− ν(f) log |Cd(f)|. (3.17)

The full log-likelihood across the analyzed bandwidth is then the sum over all frequency bins

LY(θ) =
J−1∑
j=0

log p(Y(fj)|θ). (3.18)

When both noise and signal are included in the likelihood, the vector of model parameters
θ includes the control point locations, the spline coefficients, and the GW parameters
θ = (x0, . . . , xQ, a1, . . . , aQ−1, log Ω0, n)T .

3.3 Priors

Aiming at a robust analysis, we choose poorly constraining priors for the noise parameters.
We let the control points take value in an interval bounded by one order of magnitude below
and above the true noise model Sn,true (which is used for the injection). This way, we have

Sn(f) ∈
[
10−1 Sn,true(f); 10Sn,true(f)

]
. (3.19)

Note that this prior does not reflect the allocated margins for the required LISA sensitivity,
but enables us to remain conservative in our analysis.
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We allow the control frequencies to take value within the analyzed bandwidth [fmin, fmax].
To enforce a relatively even distribution of the control points, we assign to each of them a
Beta distribution conditioned on the location of the previous one, such that

p (xi|xi−1) ∝ uαi−1
i (1− ui)βi−1, (3.20)

where ui ≡ (xi − xi−1) / (xQ − xi−1) is the position of control point xi relative to the previous
one xi−1, rescaled in the interval [0, 1]. We choose parameters values αi = 2 and βi = Q− i+2
so that the mode of the conditional distribution peaks at (xQ − xi−1)/(Q− i). This choice
ensures that if the control point xi−1 is given, as there are Q − i control points left to be
placed, the next one has more probability to be placed in the first 1/(Q− i)th of the remaining
frequency band.

Concerning the SGWB parameters, we impose uniform priors on log Ω0 and on n,
respectively in intervals [−35, −28] and [−5, 7].

4 Detection and parameter estimation

4.1 Detection

In a Bayesian framework, detecting the presence of a stochastic process can be done through
model comparison: one model assumes that the data only contains noise (null hypothesis
H0), while the other model assumes the presence of a SGWB in addition to the noise (tested
hypothesis H1). We compare the models by computing their Bayes factor, defined as the
ratio of their evidences. The log-Bayes factor is then

logB10(Y) = logZ1(Y)− logZ0(Y), (4.1)

where Zi(y) ≡
∫

θi
p (y|Hi) dθ is the evidence of the model under hypothesis Hi and Θi is the

space in which θi is allowed to take values. The presence of a SGWB is claimed when the
Bayes factor stands above a given threshold.

When dealing with parallel-tempered Markov chain Monte Carlo (MCMC) outputs, we
can approximate the evidence by thermodynamic integration [76],

logZi(Y) =
∫ 1

0
Eβ[log p (Y|θ, Hi)] dβ , (4.2)

where the expectation Eβ is taken with respect to the tempered posterior density
pβ (Y|θ, Hi) ∝ p (Y|θ, Hi)β p(θ, Hi). The variable β is the inverse temperature of the tem-
pered chain, and Eβ is the expectation of the chain at temperature 1/β taken over the
parameter space Θ.

4.2 Averaged Bayes factors

We aim to find the parameter pairs (Ω0, n) for which the Bayes factor is equal to the detection
threshold Bthresh. To do that, we compute the posterior distributions under both H0 and
H1 for a wide range of parameter values. The Bayes factor depends on the specific data
realization; instead of generating hundreds of data realizations for each parameter pair, we
choose to consider the averaged Bayes factor, that we define as the Bayes factor computed
from the expected likelihood under the true distribution when H1 is true.
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In other words, if the data is described by the true parameter vector θ?, then we can
compute the averaged log-Bayes factor

logB10 = logB10(Ȳ), (4.3)

where Ȳ = Eθ? [Y] is the expectation of the data Y under the true hypothesis. Note that
logB10 is not the statistical expectation of the log-Bayes factor, but we will show later that
using logB10 = Bthresh provides a conservative criterion for detection.

4.3 Optimal model order

For this work, we adopted a spline model that is flexible enough to fit the spectral series.
With the right parametrization, it yields satisfactory results in inferring the instrumental
noise PSD shape (see section 4.4). One of the challenges of this strategy is to choose the most
suitable model order, i.e., the optimal number of spline knots. This is crucial for avoiding
over-fitting situations, but also biases in the search and in parameter estimation.

As described previously, we perform a model selection by computing Bayes factors
between two hypotheses. Thus, for a given data scenario, we can either perform the analysis
multiple times with different spline orders, or dynamically estimate the model order together
with its corresponding parameters. As a cross-validation test for our analyses here, we choose
the latter applied on a simplified case. We use a reversible jump (RJ)-MCMC algorithm [77],
which is generalization of the Metropolis-Hastings [78–80] algorithm, capable of searching in
parameter spaces of varying dimensionality (see [81] for a review of sampling techniques). In
particular, we use a RJ algorithm presented in [82], which is enhanced with parallel tempering
techniques [83, 84] to efficiently identify the optimal number of knots in our spline model.

To simplify the procedure, we focus on instrumental noise only. We simulate one year
of noise data, as described in section 2, without any GW signal present. We then build a
likelihood function that is computationally efficient.

Our spline model fixes the control frequencies of the two knots at the edges of our
spectrum; their amplitudes Slow and Shigh are left as free parameters to be estimated. The
number of other knots k, their frequencies Sj,k and amplitudes fj,k in-between are also
determined from the data. We remind here that the j index corresponds to the spline number
for the given model order k.

For the knot parameters, we have chosen a quite broad uniform prior, logSj,k ∼
U [−100, −91] and for log fj,k, a uniform prior across the log-frequency range; for the spline
model order k, we used an uninformative prior k ∼ U [3, 30]. Running the algorithm for 10
temperatures [83] with 20 walkers each [84] yields the result shown in the left panel of figure 4.

It is particularly interesting to also inspect the 2D posterior slices of the parameters,
shown in the right panel of figure 4. We have essentially sampled the full parameter space of
logSj,k and log fj,k for all the possible values of the dimensionality k of the model. The figure
shows that there is no unique solution when fitting both the frequencies and amplitudes of
the spline knots, and the MCMC chains explore the true shape of the noise spectra.

From the posterior distribution of the model order k, shown in the left panel of figure 4,
we see that a maximum can be found between k = 5 and k = 6. In the rest of the study, we
fix the model order to this optimal value k = 5, i.e. 5 + 2 knots. This translates to twelve
parameters (the internal knots’ frequencies and amplitudes, plus the frequencies of the two
edge knots).
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Figure 4. Estimating the optimal model order using RJ-MCMC. In this investigation, we have fixed
the frequencies of the two edge knots, while letting the algorithm determine the optimal number of
internal knots, together with their frequencies and amplitude. Right: posterior samples of the knots
amplitudes logSj,k and frequencies log fj,k for all given spline models of order k, as sampled with our
RJ algorithm (we stack the chains for all k). The algorithm explores the true noise curve (solid black
line) by proposing spline knots positioned across the frequency range (see main text for more details).
The plot was generated with [85].

4.4 Assessment of the detectability of a stochastic gravitational-wave back-
ground

Now we compute the averaged Bayes factors for a wide range of SGWB parameters to assess
our ability to detect a SGWB with a noise of unknown spectral shape, under the assumptions
that we stated in section 3. For a set of spectral indices ranging from -4 to 5, and log-energy
densities between 10−14 and 10−12, we run our Bayesian model comparison and plot the
results in figure 5.

We represent values of log-Bayes factors using a color scale, with warmer colors signify
large detection evidences. From the initial set of 272 computed point, we interpolate the
log-Bayes factor values on a finer grid of 100× 100 points using a Gaussian process regression.
This allows us to plot a line of constant Bayes factor (dashed orange) of B10 = 30, which is
considered as a detection threshold for strong evidence for hypothesis H1 [38]. All couples
of parameters that lie below this line are considered as undetectable signals, and all above
values are strong detections. For example, we find that the amplitude detection threshold for
a scale-invariant SGWB (n = 0) is about Ω0 = 2.5× 10−13, which is close to what previous
work using a parametrized noise PSDs model found (for example, Adams and Cornish get
Ω0 = 1.7× 10−13). Besides the obvious effect of the increase of detectability with the energy
density, we also observe a dependence that is strongly tied to the spectral shape of the
noise present in the data. For a given energy density, the Bayes factor is minimum when n
is between 0.5 and 1. We observe the same minimum for the SNR curve, suggesting that
our ability to detect the signal is mainly driven by its SNR, which is itself determined by
both Ω0 and n.

The location of the SNR minimum is set by the strain sensitivity curve in figure 3, as
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Figure 5. Left: averaged log-Bayes factor contour plot for a range of SGWB spectral index n
(x-axis) and log-energy density log Ω0 (y-axis) with a knee frequency of f0 = 3.16 mHz. The color map
represents the values of the decimal logarithm of Bayes factor, with warmer shades indicating larger
values. The orange dashed line is the detection threshold taken equal to 30, considered as a strong
evidence for the presence of the SGWB. The yellow dotted line shows the SNR-10 line as a comparison.

well as the SGWB strain PSD’s dependence on frequency, which is proportional to fn−3, as
shown in eq. (2.6). Note that the choice of the knee frequency (of about 3 mHz) also drives
the location of the minimum through its contribution to the effective SGWB amplitude.

Figure 5 provides us with the range of power-law parameters that LISA will be able to
probe. This result can be considered in the context of previous measurements. The LIGO,
Virgo and KAGRA collaborations are able to put upper limits on the isotropic gravitational-
wave background from Advanced LIGO’s and Advanced Virgo’s third observing run [16]. In
particular, they find that the dimensionless energy density is bounded as ΩGW ≤ 5.8× 10−9

at the 95 % credible level for a frequency-independent gravitational-wave background, with
99 % of the sensitivity coming from the band 20 Hz to 76.6 Hz. They also find the upper limit
ΩGW ≤ 3.4× 10−9 at 25 Hz for a power-law gravitational-wave background with a spectral
index of 2/3 in the band 20 Hz to 90.6 Hz, and ΩGW ≤ 3.9× 10−10 at 25 Hz for a spectral
index of 3, in the band 20 Hz to 291.6 Hz.

The NANOGrav collaboration [22], using their 12.5 yr pulsar-timing data set, finds that
under their fiducial model, the Bayesian posterior of the amplitude has median 1.92+0.75

−0.55×10−15

for an f−2/3 spectrum (as expected from a population of inspiralling supermassive black
holes) at a reference frequency of 1 yr−1. The International Pulsar Timing Array (IPTA)
collaboration [24], using their second data release and for a spectral index of −2/3, finds a
recovered amplitude of 2.8+1.2

−0.8 × 10−15 at a reference frequency of 1 yr−1.
We gather these experimental measurements in table 1 and compare them to what LISA

could observe, should the frequency dependence of the GW background remain constant
in-between the detectors sensitive bands. This comparison shows that LISA would be able to
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Detector n Ωdet(fdet) ΩLISA(f0) Thresh. Refs.

LVK 0 5.8 · 10−9 5.8 · 10−9 2.5 · 10−13 [16]
LVK 2/3 3.4 · 10−9 8.3 · 10−12 2.7 · 10−13 [16]

NANOGrav −2/3 1.9 · 10−15 9.2 · 10−9 2.0 · 10−13 [22]
IPTA −2/3 2.8 · 10−15 1.3 · 10−8 2.0 · 10−13 [24]

Table 1. Comparison of LISA capabilities with current detector constraints on SGWB parameters.
The columns from left to right show, respectively, the detector’s collaboration name; the power-law
index value; the energy density computed at the detector pivot frequency fdet (25 Hz for LVK, 1 yr−1

for NANOGrav and IPTA); the extrapolated energy density at LISA’s 3 mHz pivot frequency; the
detection threshold computed in this study; and the reference from which we extract the constraints.

detect, or place tighter constraints, on energy densities for SGWB searched in LIGO-Virgo or
pulsar timing array data. Besides, the detection limits of about 10−14 we obtain in figure 5
for extreme spectral indices like n = −3 or n = 4 would yield huge amplitudes in the IPTA
and LIGO-Virgo bands, respectively. Those lying well above the detectors sensitivity, such
power laws would be visible today and are therefore not expected to arise in LISA.

4.5 Parameter estimation

As an example of parameter posterior, we pick the case Ω0 = 1.63× 10−13 and n = −1. It
is particularly interesting because it lies in the detection limit and also features a SGWB
strain PSD slope of −4, which is similar to the low-frequency shape of the strain sensitivity
curve (in power). We plot the signal parameters’ joint posterior in the left panel of figure 6
and verify that the injected values lies within the credible interval. We also compute the
corresponding TDI signal and noise PSDs from posterior samples in the right panel of figure 6.
The maximum a posteriori estimate (MAP) of the GW signal parameters yields the red solid
curve, which is close to the true PSD shown by the dashed purple curve, even though the
credible interval is relatively large. The noise PSD represented by the blue curve is better
constrained as it dominates over the signal in the entire frequency band. This is confirmed
by the spline reconstruction of the links’ noise PSD in figure 7, where the MAP estimate (in
blue) coincides with the true PSD (dashed orange) with a relative error smaller than 10 % in
most of the analyzed frequency band.

4.6 Validity of the averaged Bayes factors

In this section, we check that the averaged Bayes factor logB10 we compute with the method
outlined in section 4.1 is consistent with what we obtain with single data realizations. We
generate simulated datasets following the model described in section 2; we include different
realizations of both the noises and the SGWB for a handful of cases.

As we are particularly interested in LISA’s ability to detect a SGWB as a function
of its shape, we extract the pairs of parameters defining the contour line B10(Ω0, n) = 30
corresponding to the detection threshold (dashed orange line in figure 5). For each of these
pairs corresponding to an integer power law index between n = −2 and n = 3, we generate
10 data realizations under hypothesis H1, from which we sample the posterior distributions
and compute the evidences under both H0 and H1. We plot the histogram of the log-Bayes
factors we obtain in figure 8 (orange), along with the detection threshold line (dashed red).
The distribution we obtain exhibits a significant variance, but the mean is located towards
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Figure 6. Left: posteriors of the SGWB parameters (log-energy density and power-law index) for an
injection of Ω0 = 1.63× 10−13 and n = −1. Right: posteriors of the noise (blue) and the SGWB (red)
PSDs in TDI channel X for an injection with Ω0 = 1× 10−13 and n = −1. The light red-shaded area
represents the 3-σ credible interval.
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Figure 7. Upper panel: posterior of the single-link noise PSD (blue) compared to the true value
(dashed orange). The vertical red lines locate spline control points. Bottom panel: average relative
error obtained with the MAP estimate, along with the 3-σ credible interval.

Bayes factor values larger than the threshold. Among the Bayes factors estimated from these
simulations, 80 % yield a value above the detection threshold.

In addition, we perform a similar analysis with 30 data realizations generated under
hypothesis H0 (containing only noise), and plot the histogram of the log-Bayes factors we
obtain in blue on the same figure. They are concentrated around zero and distributed
approximately like a chi-squared distribution. All the simulations produce values below the
detection threshold, i.e., there are no false positive for these data realizations. The orange

– 16 –



J
C
A
P
0
4
(
2
0
2
3
)
0
6
6

0 1 2 3 4 5
log10B10

10 2

10 1

100

H0

H1

Detection threshold

Figure 8. Statistics of the decimal log-Bayes factor for couples of parameters (log Ω0, n) corresponding
to the detection threshold B10 = 30 (vertical red dashed line) derived from the contour plot in figure 5.
For each power-law index, Bayes factors are computed for 10 data realizations under H1 (noise and
signal, in blue). The histogram of log-Bayes factors computed for 20 data realizations under H0 (noise
only) is also shown in orange.

and blue distributions show that our derivation of detection limit is a conservative one as it
minimizes the false-alarm rate at the expense of 20 % of false negatives.

5 Conclusion

We have presented a method to detect SGWBs from LISA measurements, which, for the first
time, is model-agnostic with respect to the instrumental noise spectral shape. Instead, we use a
flexible model for the single-link noise PSDs based on cubic splines. Such modelling could avoid
biasing the instrument characterization and the subsequent impact on the signal detection.
We test for the presence of an isotropic SGWB through Bayesian model comparison, where we
model both the signal and the noise transfer functions. We also adopt a template-based search
to look for power-law signals. As a step towards more realistic instrumental setup compared to
previous studies, we simulate interferometric data in the time domain, featuring a spacecraft
constellation with unequal, time-varying armlengths. In this configuration, the assumptions
underlying classic pseudo-orthogonal TDI variables A,E, T break down. Therefore, we directly
analyze the three second-generation Michelson variables X2, Y2, Z2 and account for their full
frequency-dependent covariance matrix. We restrict the observation time to one year and the
analyzed frequency bandwidth to the interval 0.1 mHz to 50 mHz to mitigate computation
time and artefacts related to blind frequency spots of LISA’s sensitivity.

We run multiple injections of SGWBs with a wide range of energy densities and power-
law spectral indices to determine the region of the parameter space that would allow for a
detection. We confirm LISA’s ability to detect a scale-invariant SGWB with an energy density
above ∼ 2× 10−13, a threshold that was previously reported in the literature, in spite of the
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added flexibility on the noise modeling. This confirms LISA’s ability to detect SGWBs that
not accessible to today’s GW detectors. In addition, we show that with a pivot frequency of
f0 ∼ 3 mHz and power-law indices ranging between n = −2 and n = 3, we can distinguish
GW backgrounds from noise provided that their SNR is sufficiently large. We also probe
larger absolute values of indices, keeping in mind that such extreme cases are unlikely to
correspond to any signal as they would have been detected by current observatories.

This work motivates further investigations to improve the robustness of SGWBs searches
with space-based observatories against instrumental noise modeling. In this perspective,
future works will account for distinct transfer functions for the different noise sources, and in
particular for acceleration and readout noises. We also plan to allow for different noise levels
across the various interferometers. Moreover, we performed our study based on a power-law
model of isotropic stochastic signals, which does not reflect the full diversity of processes that
can lead to stochastic backgrounds of GWs. We plan to test other templates, but also to
assess to what extent one can be agnostic with respect to both the signal and noise shapes
while preserving the ability to tell them apart. As a final step, we aim to include the various
astrophysical stochastic signals in our analysis, thus testing this pipeline to the greater LISA
global fit scheme [64].
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A Derivation of the time-domain response function

We express each stochastic point source’s position using the Cartesian coordinate system
(x,y, z), defined such that (x,y) is the plane of the ecliptic. We introduce the associated
spherical coordinates (θ, φ), based on the orthonormal basis vectors (êr, êθ, êφ), as illustrated
in figure 9. The k-th source localization is parametrized by the ecliptic latitude βk = π/2− θk
and the ecliptic longitude λk = φk. The basis vectors read

êr,k = (cosβk cosλk, cosβk sinλk, sin βk), (A.1a)
êθ,k = (sin βk cosλk, sin βk sinλk,− cosβk), (A.1b)
êφ,k = (− sinλk, cosλk, 0). (A.1c)

The propagation vector is k̂k = −êr,k. We define the polarization vectors as ûk = −êφ,k
and v̂k = −êθ,k. This produces, for source k, a direct orthonormal basis (ûk, v̂k, k̂k).

The time series of frequency shifts y12,k(t), experienced by light traveling along link 12,
is computed by projecting the strain of point source k on the link unit vector n̂12 (computed
from the spacecraft positions),

H12,k(t) = h+(t, n̂k)ξ+(ûk, v̂k, n̂12)
+ h×(t, n̂k)ξ×(ûk, v̂k, n̂12),

(A.2)
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Figure 9. Parametrization of the localization for point source k. The propagation vector is k̂k,
and the polarization vectors are ûk and v̂k. Adapted from the LDC Manual, available at https:
//lisa-ldc.lal.in2p3.fr.

where we assume that the link unit vector n̂12 is constant during the light travel time. The
antenna pattern functions are given by

ξ+(ûk, v̂k, n̂12) = (ûk · n̂12)2 − (v̂k · n̂12)2, (A.3a)
ξ×(ûk, v̂k, n̂12) = 2(ûk · n̂12)(v̂k · n̂12). (A.3b)

Light emitted by spacecraft 2 at t2 reaches spacecraft 1 at t1. Accounting for the effect
of source k only, these two times t1 and t2 are related by H12,k(x, t),

t1 ≈ t2 + L12
c
− 1

2c

∫ L12

0
H12,k(x(λ), t(λ)) dλ. (A.4)

We approximate the wave propagation time to first order as t(λ) ≈ t2 + λ/c. Also, x(λ) =
x2(t2) + λn̂12(t2), where x2(t2) represents the position of the emitter spacecraft at emission
time. Using these two expressions, we can further refine H12,k as

H12,k(x(λ), t(λ)) = H12,k

(
t(λ)− k̂k · x(λ)

c

)

= H12

(
t2 −

k̂k · x2(t2)
c

+ 1− k̂k · n̂12(t2)
c

λ

)
,

(A.5)

Combining eqs. (A.4) and (A.5) and differentiating the resulting expression with respect to t2
yields the relative frequency shift, y12, experienced by light as it travels along link 12,

y12,k(t2) ≈ 1
2
(
1− k̂k · n̂12(t2)

)[H12,k

(
t2 −

k̂k · x2(t2)
c

)
−H12,k

(
t2 −

k̂k · x1(t1)
c

+ L12
c

)]
.

(A.6)
Here, we have introduced the receiver spacecraft position at reception time x1(t1) = x2(t2) +
L12n̂12(t2). These spacecraft positions are expressed in the coordinate frame introduced
represented figure 9, and computed with LISA Orbits [86].
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Using t1 ≈ t2 + L12/c and the fact that the spacecraft moves slowly compared to the
propagation timescale, we obtain x2(t2) ≈ x2(t1) and n̂12(t1) ≈ n̂12(t2),

y12,k(t1)≈ 1
2
(
1− k̂k · n̂12(t1)

)[H12,k

(
t1−

L12(t1)
c
− k̂k ·x2(t1)

c

)
−H12,k

(
t1−

k̂k ·x1(t1)
c

)]
,

(A.7)
where the equation for y12,k is now solely a function of reception time t1. Finally, combining
eqs. (2.7), (2.8) and (A.2) gives y12 as a function of t1 in terms of the point sources’ strains.

B Derivation of the stochastic gravitational-wave background response in
the frequency domain

In this section, we derive the frequency-domain covariance of two links due to an isotropic
and stationary SGWB given by eq. (3.9).

The measured response to a particular polarization p = +,× includes the contribution
from all sky locations, so that

ylm,p(t) =
∫

k̂
ylm,p(t, k̂) d2k̂. (B.1)

We can obtain the expression for ylm,p(t, k̂) by combining eq. (2.8) and eq. (A.2) to get

ylm,p(t, k̂) ≈ 1
2
(
1− k̂ · n̂lm(t)

) [hp
(
t− Llm(t)

c
− k̂ · xm(t)

c
, n̂k

)

− hp

(
t− k̂ · xl(t)

c
, n̂k

)]
ξp(ûk, v̂k, n̂lm).

(B.2)

Then, we decompose the time-domain GW perturbation hp(τ, k̂) on the Fourier basis as

hp(τ, k̂) =
∫ +∞

−∞
h̃p(f, k̂)e2πifτ df. (B.3)

Injecting this decomposition into eq. (B.2) yields

ylm,p(t, k̂) ≈
∫ +∞

−∞
h̃p(f ′, k̂)e2πif ′tGlm,p(f ′, t, k̂) df ′, (B.4)

where we defined the kernel

Glm,p(f ′, t, k̂) = ξp(ûk, v̂k, n̂lm)
2
(
1− k̂ · n̂lm(t)

) [e− 2πif ′
c (Llm(t)+k̂·xm(t)) − e−

2πif ′
c

k̂·xl(t)
]
. (B.5)

Now we compute the Fourier transform of eq. (B.4) evaluated at frequency f , which yields

ỹlm,p(f, k̂) =
∫ +∞

−∞
h̃p(f ′, k̂)G̃lm,p(f ′, f − f ′, k̂)df ′, (B.6)

which is the convolution of the gravitational strain with the Fourier transform of the kernel

G̃lm,p(f ′, f, k̂) ≡
∫ +∞

−∞
Glm,p(f ′, t, k̂)e−2πift dt . (B.7)
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For isotropic, stationary, zero-mean backgrounds with PSD Sh, the strain covariance can be
written as

E
[
h̃p(f, k̂)h̃∗p′(f ′, k̂′)

]
= 1

8πSh(f)δ(f − f ′)δ(k̂− k̂′)δpp′ . (B.8)

Let us label the covariance of two links lm and l′m′ as

Clm,l′m′,p(f) ≡ E
[
ỹlm,p(f), ỹ∗l′m′,p(f)

]
. (B.9)

Plugging eq. (B.1) and eq. (B.6) into eq. (B.9), owing to isotropy and stationarity we obtain

Clm,l′m′,p(f) =
∫∫

k̂
Sh(f ′)G̃lm,p(f ′, f − f ′, k̂)G̃∗l′m′,p(f ′, f − f ′, k̂) df ′ d2k̂ . (B.10)

The above expression can be simplified by noting that LISA’s response to a infinitely large
number of incoherent sources (a background) only very weakly depends on time (up to about
1 %), although the response to a GW with wave vector k̂ has time variations. In other words,
sky averaging washes out the time dependence, so that one can approximate the averaged
response at t by its value at any given time t0. As a result, we can write eq. (B.10) as the
product of the strain PSD and a response function that directly depends on the time-domain
kernel,

Clm,l′m′,p(f) = Sh(f)Rlm,l′m′,p(f, t0), (B.11)

where we defined

Rlm,l′m′,p(f, t0) ≡
∫
Glm,p(f, t0, k̂)G∗l′m′,p(f, t0, k̂) d2k̂ . (B.12)

This equation allows us to compute the elements of the link response matrix involved in
eq. (3.9), after summing over the two polarizations.
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