562 research outputs found

    Extraordinary THz Transmission with a Small Beam Spot:the Leaky Wave Mechanism

    Get PDF
    The discovery of extraordinary optical transmission (EOT) through patterned metallic foils in the late 1990s was decisive for the development of plasmonics and cleared the path to employ small apertures for a variety of interesting applications all along the electromagnetic spectrum. However, a typical drawback often found in practical EOT structures is the large size needed to obtain high transmittance peaks. Consequently, practical EOT arrays are usually illuminated using an expanded (mimicking a plane wave) beam. Here, it is shown with numerical and experimental results in the THz range that high transmittance peaks can be obtained even with a reduced illumination spot exciting a small number of holes, provided that the structure has a sufficient number of lateral holes out of the illumination spot. These results shed more light on the prominent role of leaky waves in the underlying physics of EOT and have a direct impact on potential applications

    Velázquez

    Get PDF
    Copia digital. Madrid : Ministerio de Educación, Cultura y Deporte. Subdirección General de Coordinación Bibliotecaria, 201

    Controlling the direction of propagation of surface plasmons via graded index effective dielectric media

    Get PDF
    In this work, we propose a mechanism to steer and tailor surface plasmon propagation by using graded index concepts. In this approach, a block of dielectric with fixed thickness is placed on top of a semi-infinite metal. The beam steerers are then designed by simply changing the height of the dielectric in the direction perpendicular to the propagation axis. The analytical design is presented and several structures are evaluated with the ability to steer the incoming surface plasmons at any desired output angle.V.P.-P. is supported by the Newcastle University (Newcastle University Research Fellow)

    Mid-infrared plasmonic inductors: Enhancing inductance with meandering lines

    Get PDF
    UPNa. Departamento de Ingeniería Eléctrica y Electrónica. Laboratorio de fotónica TERALABWe present a mid-infrared inductor that when applied to an extraordinary transmission hole array produces a strong redshift of the resonant peak accompanied by an unprecedented enlargement of the operation bandwidth. The importance of the result is twofold: from a fundamental viewpoint, the direct applicability of equivalent circuit concepts borrowed from microwaves is demonstrated, in frequencies as high as 17â€...THz upholding unification of plasmonics and microwave concepts and allowing for a simplification of structure design and analysis; in practical terms, a broadband funnelling ofinfrared radiation with fractional bandwidth and efficiency as high as 97% and 48%, respectively, is achieved through an area less than one hundredth the squared wavelength, which leads to an impressive accessible strong field localization that may be of great interest in sensing applications.Effort sponsored by Spanish Government under contracts Consolider EngineeringMetamaterials CSD2008-00066, TEC2011-28664-C01 and TEC2011-28664-C02. V.T. acknowledges funding from Universidad Pública de Navarra. P.R.-U. is sponsored by the Government of Navarra under funding program Formación de tecnólogos 055/01/11. M.N.-C. is supported by the Imperial College Junior Research Fellowship. M.B. acknowledges funding by the Spanish Government under the research contract program Ramón y Cajal RYC-2011-08221

    Electromagnetic Response of Extraordinary Transmission Plates Inspired on Babinet’s Principle

    Get PDF
    This chapter is devoted to polarization effects arisen from perforated metallic plates exhibiting extraordinary transmission (ET). Setting aside the state-of-the-art of perforated metallic plates, we show that by applying Babinet’s principle, subwavelength hole arrays (SHAs) arranged in rectangular lattice can further enhance its potential polarization response. Different perspectives are brought about to describe and understand the particular behaviour of self-complementariness-based SHAs: Babinet’s principle, equivalent circuit analysis, retrieved constitutive parameters, etc. Afterwards, we embark on the numerical analysis of stacked self-complementariness-based perforated plates. It is shown the potential of having a birefringent artificial medium behaving like negative and positive effective refractive index for the vertical and horizontal polarization, respectively. All these findings are experimentally demonstrated at millimetre-waves.Work supported by Spanish Government under contract Consolider “ENGINEERING METAMATERIALS” CSD2008-00066
    corecore