17 research outputs found

    Dirac gauginos, R symmetry and the 125 GeV Higgs

    Get PDF
    We study a supersymmetric scenario with a quasi exact R-symmetry in light of the discovery of a Higgs resonance with a mass of 125 GeV. In such a framework, the additional adjoint superfields, needed to give Dirac masses to the gauginos, contribute both to the Higgs mass and to electroweak precision observables. We analyze the interplay between the two aspects, finding regions in parameter space in which the contributions to the precision observables are under control and a 125 GeV Higgs boson can be accommodated. We estimate the fine-tuning of the model finding regions of the parameter space still unexplored by the LHC with a fine-tuning considerably improved with respect to the minimal supersymmetric scenario. In particular, sizable non-holomorphic (non-supersoft) adjoints masses are required to reduce the fine-tuning

    Emergent productivity regimes of river networks

    Get PDF
    High-resolution data are improving our ability to resolve temporal patterns and controls on river productivity, but we still know little about the emergent patterns of primary production at river-network scales. Here, we estimate daily and annual river-network gross primary production (GPP) by applying characteristic temporal patterns of GPP (i.e., regimes) representing distinct river functional types to simulated river networks. A defined envelope of possible productivity regimes emerges at the network-scale, but the amount and timing of network GPP can vary widely within this range depending on watershed size, productivity in larger rivers, and reach-scale variation in light within headwater streams. Larger rivers become more influential on network-scale GPP as watershed size increases, but small streams with relatively low productivity disproportionately influence network GPP due to their large collective surface area. Our initial predictions of network-scale productivity provide mechanistic understanding of the factors that shape aquatic ecosystem function at broad scales

    Minimal flavour violation extensions of the seesaw

    Full text link
    We analyze the most natural formulations of the minimal lepton flavour violation hypothesis compatible with a type-I seesaw structure with three heavy singlet neutrinos N, and satisfying the requirement of being predictive, in the sense that all LFV effects can be expressed in terms of low energy observables. We find a new interesting realization based on the flavour group SU(3)e×SU(3)ℓ+NSU(3)_e\times SU(3)_{\ell+N} (being ee and ℓ\ell respectively the SU(2) singlet and doublet leptons). An intriguing feature of this realization is that, in the normal hierarchy scenario for neutrino masses, it allows for sizeable enhancements of μ→e\mu \to e transitions with respect to LFV processes involving the τ\tau lepton. We also discuss how the symmetries of the type-I seesaw allow for a strong suppression of the N mass scale with respect to the scale of lepton number breaking, without implying a similar suppression for possible mechanisms of N productionComment: 14 pages, 6 figure

    On the probability of extinction of the Haiti cholera epidemic

    Get PDF
    More than three years after its appearance in Haiti, cholera has already caused more than 8,500 deaths and 695,000 infections and it is feared to become endemic. However, no clear evidence of a stable environmental reservoir of pathogenic Vibrio cholerae, the infective agent of the disease, has emerged so far, suggesting the possibility that the transmission cycle of the disease is being maintained by bacteria freshly shed by infected individuals. Should this be the case, cholera could in principle be eradicated from Haiti. Here, we develop a framework for the estimation of the probability of extinction of the epidemic based on current information on epidemiological dynamics and health-care practice. Cholera spreading is modeled by an individual-based spatially-explicit stochastic model that accounts for the dynamics of susceptible, infected and recovered individuals hosted in different local communities connected through hydrologic and human mobility networks. Our results indicate that the probability that the epidemic goes extinct before the end of 2016 is of the order of 1 %. This low probability of extinction highlights the need for more targeted and effective interventions to possibly stop cholera in Haiti

    Glucose- but Not Rice-Based Oral Rehydration Therapy Enhances the Production of Virulence Determinants in the Human Pathogen Vibrio cholerae

    Get PDF
    Despite major attempts to prevent cholera transmission, millions of people worldwide still must address this devastating disease. Cholera research has so far mainly focused on the causative agent, the bacterium Vibrio cholerae, or on disease treatment, but rarely were results from both fields interconnected. Indeed, the treatment of this severe diarrheal disease is mostly accomplished by oral rehydration therapy (ORT), whereby water and electrolytes are replenished. Commonly distributed oral rehydration salts also contain glucose. Here, we analyzed the effects of glucose and alternative carbon sources on the production of virulence determinants in the causative agent of cholera, the bacterium Vibrio cholerae during in vitro experimentation. We demonstrate that virulence gene expression and the production of cholera toxin are enhanced in the presence of glucose or similarly transported sugars in a ToxR-, TcpP- and ToxT-dependent manner. The virulence genes were significantly less expressed if alternative non-PTS carbon sources, including rice-based starch, were utilized. Notably, even though glucose-based ORT is commonly used, field studies indicated that rice-based ORT performs better. We therefore used a spatially explicit epidemiological model to demonstrate that the better performing rice-based ORT could have a significant impact on epidemic progression based on the recent outbreak of cholera in Haiti. Our results strongly support a change of carbon source for the treatment of cholera, especially in epidemic settings

    A Theoretical Analysis of the Geography of Schistosomiasis in Burkina Faso Highlights the Roles of Human Mobility and Water Resources Development in Disease Transmission

    Get PDF
    We study the geography of schistosomiasis across Burkina Faso by means of a spatially explicit model of water-based disease dynamics. The model quantitatively addresses the geographic stratification of disease burden in a novel framework by explicitly accounting for drivers and controls of the disease, including spatial information on the distributions of population and infrastructure, jointly with a general description of human mobility and climatic/ecological drivers. Spatial patterns of disease are analysed by the extraction and the mapping of suitable eigenvectors of the Jacobian matrix subsuming the stability of the disease-free equilibrium. The relevance of the work lies in the novel mapping of disease burden, a byproduct of the parametrization induced by regional upscaling, by model-guided field validations and in the predictive scenarios allowed by exploiting the range of possible parameters and processes. Human mobility is found to be a primary control at regional scales both for pathogen invasion success and the overall distribution of disease burden. The effects of water resources development highlighted by systematic reviews are accounted for by the average distances of human settlements from water bodies that are habitats for the parasite's intermediate host. Our results confirm the empirical findings about the role of water resources development on disease spread into regions previously nearly disease-free also by inspection of empirical prevalence patterns. We conclude that while the model still needs refinements based on field and epidemiological evidence, the proposed framework provides a powerful tool for large-scale public health planning and schistosomiasis management

    Inferences from catchment-scale tracer circulation experiments

    No full text
    In this paper the mechanisms determining the mobilization and transport of 11 solutes driven by rainfall through runoff pathways at catchment scales are 12 investigated through the analysis of tracer experiments. The hydro-chemical 13 response of a small catchment in Northern Italy has been monitored in con14 tinuous during four weeks by properly measuring rainfall rates, streamflows 15 and stream flux concentrations. The chemical response has been analyzed 16 by employing two different tracers: nitrates from diffuse agricultural sources (NO 12 17 3 ) and lithium from a point injection (Li+). A modelling exercise sim18 ulating the observed hydro-chemical response of the test catchment has also 19 been carried out. Inferences from the comparative analyses prove instructive, 20 in particular concerning the scaling of mobilization processes and the age of 21 runoff water. Indeed, the interactions between old and new water were found 22 to be central to understand the mechanisms driving the transfer of solutes 23 and pollutants from soil to stream water. The modeling exercises also evi24 denced the noteworthy potential of the formulation of transport by residence 25 time distributions to describe large scale solute transport processes

    On the predictive ability of mechanistic models for the Haitian cholera epidemic

    Get PDF
    Predictive models of epidemic cholera need to resolve at suitable aggregation levels spatial data pertaining to local communities, epidemiological records, hydrologic drivers, waterways, patterns of human mobility and proxies of exposure rates. We address the above issue in a formal model comparison framework and provide a quantitative assessment of the explanatory and predictive abilities of various model settings with different spatial aggregation levels and coupling mechanisms. Reference is made to records of the recent Haiti cholera epidemics. Our intensive computations and objective model comparisons show that spatially explicit models accounting for spatial connections have better explanatory power than spatially disconnected ones for short-to-intermediate calibration windows, while parsimonious, spatially disconnected models perform better with long training sets. On average, spatially connected models show better predictive ability than disconnected ones. We suggest limits and validity of the various approaches and discuss the pathway towards the development of case-specific predictive tools in the context of emergency management
    corecore